scholarly journals Recycling of Mixed Poly(Ethylene-terephthalate) and Poly(Lactic Acid)

2019 ◽  
Vol 253 ◽  
pp. 02005
Author(s):  
Daniel Gere ◽  
Tibor Czigany

Nowadays, PLA is increasingly used as a packaging material, therefore it may appear in the petrol-based polymer waste stream. However, with the today’s mechanical recycling technologies PLA and PET bottles cannot be easily or cheaply separated. Therefore, our goal was to investigate the mechanical, morphological and thermal properties of different PET and PLA compounds in a wide range of compositions. We made different compounds from poly(ethylene-terephthalate) (PET) and poly(lactic acid) (PLA) by extrusion, and injection molded specimens from the compounds. We investigated the mechanical properties and the phase morphology of the samples and the thermal stability of the regranulates. PET and PLA are thermodynamically immiscible, therefore we observed a typical island-sea type morphology in SEM micrographs. When PLA was added, the mechanical properties (tensile strength, modulus, elongation at break and impact strength) changed significantly. The Young’s modulus increased, while elongation at break and impact strength decreased with the increase of the weight fraction of PLA. The TGA results indicated that the incorporation of PLA decreased the thermal stability of the PET/PLA blends.

2013 ◽  
Vol 741 ◽  
pp. 28-32 ◽  
Author(s):  
Yi Chen ◽  
Yue Peng ◽  
Wen Yong Liu ◽  
Guang Sheng Zeng ◽  
Xiang Gang Li ◽  
...  

Aliphatic polycarbonate Polycarbonate/poly (lactic acid)/(PPC/PLA) blends were prepared by melt blending, 1,2-propanediol isobutyl POSS (P-POSS) were added into the blends as a compatilizer and reinforcer. The morphologies, mechanical properties and rheological properties of blends were investigated systematically. The results showed that the adding of P-POSS could improve the compatibilization of PPC and PLA obviously. The thermal stability of the blends was enhanced but the crystallization was effected slightly. Moreover, the tensile strength and impact strength of blends exhibited a considerably increase.


2015 ◽  
Vol 104 ◽  
pp. 48-56 ◽  
Author(s):  
Teresa R. Silva ◽  
Daniela P. Rodrigues ◽  
Jorge M.S. Rocha ◽  
M. Helena Gil ◽  
Susana C.S. Pinto ◽  
...  

2008 ◽  
Vol 109 (6) ◽  
pp. 4112-4120 ◽  
Author(s):  
Xuepei Yuan ◽  
Chuncheng Li ◽  
Guohu Guan ◽  
Yaonan Xiao ◽  
Dong Zhang

2012 ◽  
Vol 20 (12) ◽  
pp. 1300-1306 ◽  
Author(s):  
Jun Yong Park ◽  
Sung Yeon Hwang ◽  
Won Jae Yoon ◽  
Eui Sang Yoo ◽  
Seung Soon Im

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 248 ◽  
Author(s):  
Dashan Mi ◽  
Yingxiong Wang ◽  
Maja Kuzmanovic ◽  
Laurens Delva ◽  
Yixin Jiang ◽  
...  

In situ microfibrillation and multiflow vibrate injection molding (MFVIM) technologies were combined to control the phase morphology of blended polypropylene (PP) and poly(ethylene terephthalate) (PET), wherein PP is the majority phase. Four kinds of phase structures were formed using different processing methods. As the PET content changes, the best choice of phase structure also changes. When the PP matrix is unoriented, oriented microfibrillar PET can increase the mechanical properties at an appropriate PET content. However, if the PP matrix is an oriented structure (shish-kebab), only the use of unoriented spherical PET can significantly improve the impact strength. Besides this, the compatibilizer polyolefin grafted maleic anhydride (POE-g-MA) can cover the PET in either spherical or microfibrillar shape to form a core–shell structure, which tends to improve both the yield and impact strength. We focused on the influence of all composing aspects—fibrillation of the dispersed PET, PP matrix crystalline morphology, and compatibilized interface—on the mechanical properties of PP/PET blends as well as potential synergies between these components. Overall, we provided a theoretical basis for the mechanical recycling of immiscible blends.


2019 ◽  
Vol 947 ◽  
pp. 77-81
Author(s):  
Natsuda Palawat ◽  
Phasawat Chaiwutthinan ◽  
Sarintorn Limpanart ◽  
Amnouy Larpkasemsuk ◽  
Anyaporn Boonmahitthisud

The aim of this study is to improve the physical properties of poly(lactic acid) (PLA) by incorporating thermoplastic polyurethane (TPU), organo-montmorillonite (OMMT) and/or nanosilica (nSiO2). PLA was first melt mixed with five loadings of TPU (10–50 wt%) on a twin-screw extruder, followed by injection molding. The addition of TPU was found to increase the impact strength, elongation at break and thermal stability of the blends, but decrease the tensile strength and Young’s modulus. Based on a better combination of the mechanical properties, the 70/30 (w/w) PLA/TPU blend was selected for preparing both single and hybrid nanocomposites with a fix total nanofiller content of 5 parts per hundred of resin (phr), and the OMMT/nSiO2 weight ratios were 5/0, 2/3, 3/2 and 0/5 (phr/phr). The Young’s modulus and thermal stability of the nanocomposites were all higher than those of the neat 70/30 PLA/TPU blend, but at the expense of reducing the tensile strength, elongation at break and impact strength. However, all the nanocomposites exhibited higher impact strength and Young’s modulus than the neat PLA. Among the four nanocomposites, a single-filler nanocomposite containing 5 phr nSiO2 exhibited the highest impact strength and thermal stability, indicating that there was no synergistic effect of the two nanofillers on the investigated physical properties. However, the hybrid nanocomposite containing 2/3 (phr/phr) OMMT/nSiO2 possessed a compromise in the tensile properties.


Sign in / Sign up

Export Citation Format

Share Document