scholarly journals Numerical simulation of oscillations of a nonlinear mechanical system with a spring-loaded viscous friction damper

2019 ◽  
Vol 265 ◽  
pp. 05030
Author(s):  
Viktor Nekhaev ◽  
Viktor Nikolaev ◽  
Marina Safronova

The dynamics of a mechanical system consisting of a parallel-connected main elastic element, an external disturbance compensator having a nonlinear force characteristic, and a viscous friction damper sprung by a linear spring are studied. The resulting system of differential equations describing the behavior of the system has one and a half degrees of freedom and has specific properties depending on the ratio of stiffness of the main spring and the spring suspension of a viscous friction damper. It is established that a single nonlinear system with one and a half degrees of freedom has either one or two harmonics. In the general solution of the system of differential equations, there are always two harmonics in the above-resonance zone, one of which is always equal to the disturbance frequency, and the second one is sufficiently close to the frequency k0. In the linear conservative case and the absence of suspension of the viscous friction damper, the natural frequency of the displacement of the system k0 =14.046 s-1.

1971 ◽  
Vol 93 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Desideriu Maros ◽  
Nicolae Orlandea

This paper is a further development of the kinematic problem presented in our 1967 paper [1] in which we have obtained the transmission functions for different orders of plane systems with many degrees of freedom. This paper establishes the corresponding system of differential equations of motion beginning with these functions. The purpose of this paper is to facilitate computer programming. Our study is based on the work of R. Beyer [2, 3] and is the first original addition to his papers. A second original contribution to Beyer’s theories is the deductive method of solution, from general to particular, which we have, incorporated in our work. Beyer concluded that the cases having two or three degrees of freedom can be considered as particular solutions to the results obtained.


Author(s):  
František Bures

A description of the original mathematical model of spatial oscillations of a four-axle autonomous traction module during its movement along straight and curved sections of the railway track is proposed. In this case, the design of a four-axle autonomous traction module is presented as a complex mechanical system, and the track is considered as an elastic-viscous inertial system. The equations of motion were compiled using the Lagrange method of the ІІ kind. For each of the solids, the kinetic energy is determined by the Koenig theorem. The potential energy component is obtained by the Clapeyron theorem, as the sum of the energies accumulated in the elastic elements of the system during their deformations. The dissipative energy was also taken into account when compiling the equations of motion. Generalized forces that have no potential, in this case, include the forces of interaction between wheels and rails, which are determined using the creep hypothesis. It is important to note that the model takes into account the forces in the bonds between the bodies of the system and the spatial displacements of the rigid bodies of the mechanical system, taking into account possible restrictions. Moreover, the mathematical model developed by the author is a system of differential equations of the 100th order. This mathematical model is the base for further theoretical studies of the dynamics of railway four-axle autonomous traction modules in single motion or when moving as part of a train. To solve the resulting system of differential equations, the author develops special software that allows for complex theoretical studies of spatial oscillations of a four-axle autonomous tractionmodule to determine the indicators of its dynamic loading and traffic safety. 


2020 ◽  
Vol 317 ◽  
pp. 02001
Author(s):  
Valentin Slavov ◽  
Georgi Vukov

Mechanic-mathematical matrix modeling of the forced spatial vibrations of a wood shaper is performed in this study .The wood shaper is modeled as a mechanical system of three rigid bodies, which are connected by elastic and damping elements with each other and with the motionless floor. This mechanical system has 18 degrees of freedom. Formulas and algorithms are developed for computer calculating, analysis and synthesis of designing and investigating of this machine. This study renders an account the geometric, kinematic, mass, inertia, elastic and damping properties of the machine. A system of differential equations is derived. Analytical solutions are presented. The study presnts results of the numerical investigations of the forced spatial vibrations by using parameters of a particular machine. They allow to select parameters that reduce harmful vibrations for people and constructions.


2020 ◽  
Vol 2 (2) ◽  
pp. 42-50
Author(s):  
V Fomin ◽  
◽  
І Fomina ◽  

Seismic impacts create the possibility of parametric resonances, i.e. the possibility of the appearance of intense transverse vibrations of structure elements (in particular, of high-rise structures) from the action of periodic longitudinal forces. As a design model of a high-rise structure, a model is used which adopted in the calculation of high-rise structures for seismic effects, - a weightless vertical rod (column) rigidly restrained at the base with a system of concentrated masses (loads) located on it (Fig. 1). By solving the differential equation of the curved axis influence function for a rod is constructed by means of which influence coefficients are determined for the rod points, in which the concentrated masses are situated. These coefficients are elements of the compliance matrix . Next, the elements of the stiffness matrix are determined by inverting the matrix . Using a diagonal matrix of the load masses and matrix a system of differential equations of free vibrations of a mechanical system, consisting of concentrated masses, is constructed, and the frequencies and forms of these vibrations are determined. From the vertical component of the seismic impact, its most significant part is picked out in the form of harmonic vibrations with the predominant frequency of the impact. Column vibrations are considered in a moving coordinate system, the origin of which is at the base of the column. The forces acting on the points of the mechanical system (concentrated masses) are added by the forces of inertia of their masses associated with the translational motion of the coordinate system. The forces of the load weights and forces of inertia create longitudinal forces in the column, periodically depending on time. Further, the integro-differential equation of the dynamic stability of the rod, proposed by V. V. Bolotin in [8], is written. The solution to this equation is sought in the form of a linear combination of free vibration forms with time-dependent factors. Substitution of this solution into the integro-differential equation of dynamic stability allows it to be reduced to a system of differential equations with respect to the mentioned above factors with coefficients that periodically depend on time. For some values of the vertical component parameters of the seismic action, namely the frequency and amplitude, the solutions of these equations are infinitely increasing functions, i.e. at these values of the indicated parameters, a parametric resonance arises. These values form regions in the parameter plane called regions of dynamic instability. Next, these regions are being constructed. A concrete example is considered.


2020 ◽  
Vol 25 (4) ◽  
pp. 116-129
Author(s):  
O.S. Lanets ◽  
V.T. Dmytriv ◽  
V.M. Borovets ◽  
I.A. Derevenko ◽  
I.M. Horodetskyy

AbstractThe article deals with atwo-mass above resonant oscillatory system of an eccentric-pendulum type vibrating table. Based on the model of a vibrating oscillatory system with three masses, the system of differential equations of motion of oscillating masses with five degrees of freedom is compiled using generalized Lagrange equations of the second kind. For given values of mechanical parameters of the oscillatory system and initial conditions, the autonomous system of differential equations of motion of oscillating masses is solved by the numerical Rosenbrock method. The results of analytical modelling are verified by experimental studies. The two-mass vibration system with eccentric-pendulum drive in resonant oscillation mode is characterized by an instantaneous start and stop of the drive without prolonged transient modes. Parasitic oscillations of the working body, as a body with distributed mass, are minimal at the frequency of forced oscillations.


Author(s):  
I.P. Popov ◽  

A calculation of dynamics of a mechanical system with n degrees of freedom, including inert bodies and elastic and damping elements, involves the derivation and integration of a system of n second-order differential equations, which are reduced to a differential equation of 2n order. An increase in the degree of freedom of the mechanical system by one increases the order of the resulting differential equation by two. The solution of higher-order differential equations is rather cumbersome and time-consuming. Integration of equations is proposed to be replaced with rather simpler algebraic methods. A number of relevant theorems that relate both active and reactive parameters of mechanical systems in the series and parallel connection of mechanical power consumers are proved. Using parallel-series and series-parallel connections as an example, the calculation methods for branched mechanical systems with any number of degrees of freedom, based on the use of symbolic or complex representation of forced harmonic oscillations, are shown. The phase relationships determining loading conditions and a possibility of its artificial change are considered. The vector diagrams of the amplitudes of forces, velocities and their components in a complex plane at a zero time instant are presented, which give a complete and clear idea of the relationship between these quantities.


2016 ◽  
Vol 2 (4) ◽  
pp. 123-139 ◽  
Author(s):  
Mohammadamir Najafgholipour ◽  
Navid Soodbakhsh

Vibration equations of discrete multi-degrees-of-freedom (MDOF) structural systems is system of differential equations. In linear systems, the differential equations are also linear. Various analytical and numerical methods are available for solving the vibration equations in structural dynamics. In this paper modified differential transform method (MDTM) as a semi-analytical approach is generalized for the system of differential equations and is utilized for solving the vibration equations of MDOF systems. The MDTM is a recursive method which is a hybrid of Differential Transform Method (DTM), Pade' approximant and Laplace Transformation. A series of examples including forced and free vibration of MDOF systems with classical and non-classical damping are also solved by this method. Comparison of the results obtained by MDTM with exact solutions shows good accuracy of the proposed method; so that in some cases the solutions of the vibration equation that found by MDTM are the exact solutions. Also, MDTM is less expensive in computational cost and simpler with compare to the other available approaches.


Sign in / Sign up

Export Citation Format

Share Document