scholarly journals Determination of the Correction Factor for Dinalmefene Hydrochloride in Nalmefene Hydrochloride Injection

2019 ◽  
Vol 267 ◽  
pp. 03001
Author(s):  
Tianyi Zhao ◽  
Ziqing Liu ◽  
Furao Guo ◽  
Peiyu He ◽  
Hongyu Zhang ◽  
...  

Objective: To calculate the detection correction factor for the impurity, that is, the dinalmefene hydrochloride in nalmefene hydrochloride injection. Methods: High performance liquid chromatography (HPLC) is used to analyze the impurities of nalmefene hydrochloride easily produced during storage, and the impurity is determined and correction factor is calculated for the known the dinalmefene hydrochloride. According to the standard curve method, the sample concentration is selected between the detection limit and the limit of quantification, and the standard curve is prepared. The correction factor is then calculated according to the slope of the standard curve. Results: finally, the correction factor for dinalmefene hydrochloride is 0.22. Conclusions: the correction factor calculated by the standard curve method is accurate and reliable, and can be used for impurity detection of nalmefene hydrochloride injection.

Author(s):  
BS Dattilo ◽  
S Gallo ◽  
G Lionetti ◽  
SG Rossi

AbstractA new method is described for the qualitative and quantitative determination of both free and bound maleic hydrazide residues in tobacco leaves and cigarette filler by high performance liquid chromatography. Analyses were carried out by hydrolyzing samples of ground tobacco with 4 N hydrochloric acid for 40 minutes under reflux followed by sample chromatography, running isocratic elutions with a dilute solution of phosphoric acid. The quantitative determination of maleic hydrazide was performed by light absorption at 320 nm, by the calibration curve method. Recoveries of maleic hydrazide added to tobacco samples were greater than 90 %. The detection limit of the method, determined on ground tobacco leaves, was at least 5 ppm. The results obtained by this procedure and by the ISO standard method no. 4876 are in good accordance.


2012 ◽  
Vol 57 (1) ◽  
pp. 484-489 ◽  
Author(s):  
Mei Zhang ◽  
Grant A. Moore ◽  
Murray L. Barclay ◽  
Evan J. Begg

ABSTRACTA rapid and simple high-performance liquid chromatography (HPLC) assay was developed for the simultaneous determination of three triazole antifungals (voriconazole, posaconazole, and itraconazole and the metabolite of itraconazole, hydroxyitraconazole) in human plasma. Sample preparation involved a simple one-step protein precipitation with 1.0 M perchloric acid and methanol. After centrifugation, the supernatant was injected directly into the HPLC system. Voriconazole, posaconazole, itraconazole, its metabolite hydroxyitraconazole, and the internal standard naproxen were resolved on a C6-phenyl column using gradient elution of 0.01 M phosphate buffer, pH 3.5, and acetonitrile and detected with UV detection at 262 nm. Standard curves were linear over the concentration range of 0.05 to 10 mg/liter (r2> 0.99). Bias was <8.0% from 0.05 to 10 mg/liter, intra- and interday coefficients of variation (imprecision) were <10%, and the limit of quantification was 0.05 mg/liter.


Holzforschung ◽  
2020 ◽  
Vol 74 (7) ◽  
pp. 673-682 ◽  
Author(s):  
Tao Yang ◽  
Mengqi Dong ◽  
Juqing Cui ◽  
Lu Gan ◽  
Shuguang Han

AbstractIn recent years, tannin degradation has been used to obtain tannin materials with an optimal molecular weight distribution (MWD) for synthesizing tannin-formaldehyde (TF) resin with high performance, but the optimal MWD of tannins is still unknown. The excellent formaldehyde reactivity of tannins is the basis for the synthesis of high-performance TF resin. Based on the formaldehyde reactivity of tannins, bayberry tannins and larch tannins were used to explore the optimal MWD of tannins for TF resin synthesis. Progressive solvent precipitation (PSP) was used to obtain tannin fractions with different MWDs. The formaldehyde reactivity of tannins was determined using the modified Stiansy method combined with the standard curve method (GB/T 17657-2013). The bayberry tannin fraction [weight-average molecular weight (Mw) of acetylated tannin: 4115, mean degree of polymerization (mDP): 6.64] and the larch tannin fraction (Mw of acetylated tannin: 3906, mDP: 5.84) had the best formaldehyde reactivity. Furthermore, significant differences in the formaldehyde reactivity of condensed tannins (CTs) with different MWDs were observed. The obtained results can be used to purposefully degrade tannins to achieve an optimal MWD, which is beneficial for the production of TF adhesives with high performance.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hui Yan ◽  
Zhuan-Di Zheng ◽  
Hong-Fei Wu ◽  
Xiao-Chuang Liu ◽  
An Zhou

AbstractTenuifolin was used as a reliable chemical marker for the quality control of Radix Polygalae. The determination of tenuifolin is challenging because the analyte molecule lacks a suitable chromophore. The aim of this study was to establish a microemulsion high-performance liquid chromatography (MELC) method which is robust and sensitive, and can separate and determine tenuifolin in Radix Polygalae using an oil-in-water (O/W) microemulsion mobile phase. The separations were performed on a C18 (4.6 × 250 mm, 5 μm) column at 25 °C using a flow rate of 1.0 mL/min, and an ultraviolet detection wavelength of 210 nm. The microemulsion mobile phase comprised 2.8% (w/v) sodium dodecyl sulfate (SDS), 7.0% (v/v) n-butanol, 0.8% (v/v) n-octane and 0.1% (v/v) aqueous orthophosphate buffer (H3PO4). The linearity analysis of tenuifolin showed a correlation coefficient of 0.9923 in the concentration range of 48.00–960.00 µg/mL. The accuracy of the method based on three concentration levels ranged from 96.23% to 99.28%; the limit of detection (LOD) was 2.34 µg/mL, and the limit of quantification (LOQ) was 6.76 µg/mL. The results of our study indicated that the optimized MELC method was sensitive and robust, and can be widely applied for the separation and determination of tenuifolin in Radix Polygalae.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Sherry Cox ◽  
Joan Hayes ◽  
Jason Yarbrough ◽  
Tamara Veiga-Parga ◽  
Cheryl Greenacre

A simple accurate and sensitive high-performance liquid chromatographic method for the determination of meloxicam and piroxicam concentrations in small volume plasma samples has been developed. Following a liquid extraction using chloroform, samples were separated by reversed-phase high-performance liquid chromatography on an XBridge C18 column (4.6 × 250 mm) and quantified using ultraviolet detection at 360 nm. The mobile phase was a mixture of water with glacial acetic acid (pH 3.0) and acetonitrile (50 : 50), with a flow rate of 1.0 mL/min. The standard curve ranged from 5 to 10,000 ng/mL for meloxicam in bearded dragon (Pogona vitticeps) plasma and piroxicam in crane (Grus rubicunda) plasma. Intra- and interassay variability for meloxicam and piroxicam were less than 10% and the average recovery was greater than 90% for both drugs. This method was developed in bearded dragon and crane plasma and should be applicable to any species, making it useful for those investigators dealing with small sample volumes, particularly when conducting pharmacokinetics studies which require multiple sampling from the same animal.


2020 ◽  
Vol 8 (2) ◽  
pp. 1-7
Author(s):  
Ihsan M. Shaheed ◽  
Saadiyah A. Dhahir

The quinolizindine alkaloid compound, oxymatrine pesticide, was analysis in the river water samples collected from different agriculture areas in the Iraqi city of Kerbala and also in its formulation using developed reverse-phase high-performance liquid chromatography method. Acetonitrile:methanol (60:40 v/v) was chosen as mobile phase at pH (7.0), flow rate 0.5 mL/min, and 20 µL as volume injection. Modified ecological-friendly method, dispersive liquid-liquid microextraction, was used for the extraction of oxymatrine from water samples. Linearity study was constructed from 0.1 to 70 μg/mL at λmax 205 nm. The limit of detection and limit of quantification were 0.025 and 0.082 μg/mL, respectively, and the relative standard deviation (RSD) % was 0.518%. Three spiked levels of concentration (20.0, 40.0, and 70.0 μg/mL) were used for the validation method. The percentage recovery for the three spiked samples was ranged between 98.743 and 99.432 and the RSD% was between 0.051 and 0.202%, the formulation studies of oxymatrine between 99.487 and 99.798, and the RSD% was ranged from 0.045 to 0.057%. The developed method can be used accurately and selectively for the determination of oxymatrine in environmental samples and in the formulation.


Author(s):  
Huong Nguyen Thi ◽  
Bich Phuong Vu Thi ◽  
Long Nguyen Van ◽  
Thanh Diu Dao Thi ◽  
Linh Chu Manh ◽  
...  

Acrylamide is a toxic chemical formed in high temperature-processed foods (e.g., Potato snacks, instant noodle, etc.). Previous studied showed that acrylamide is a carcinogenic&nbsp;agent in human and animals. Evaluation of acrylamide contents in some processed starchy&nbsp;foods has been performed in order to investigate the presence of acrylamide in foods in&nbsp;Hanoi. This study is to validate a LC-MS/MS method for determination of acrylamide in&nbsp;food and to determine the acrylamide content in some processed starchy foods available in&nbsp;Hanoi, Vietnam. Samples of potato chips collected from food shops in Hanoi were tested.&nbsp;The acrylamide content was determined by high performance liquid chromatography-mass&nbsp;spectrometry. The method was validated for accuracy, precision, linearity, and recovery.&nbsp;The assay was linear over the entire range of calibration standards i.e., a concentration&nbsp;range from 1 ng/mL to 2500 ng/mL (r2 &gt;0.996). The precision and recoveries were obtained&nbsp;based on the AOAC guidelines. The lower limit of quantification of the analytical method&nbsp;of acrylamide was 24,82 ng/mL. The validated method was successfully applied to determine acrylamide in 28 samples of potato snacks. The content of acrylamide ranged from&nbsp;58.0 to 1829.6 mg/kg. Acrylamide was detected in all samples, nevertheless, the acrylamide&nbsp;content was lower than that from other studies published in 2009 in Europe. &nbsp;


2020 ◽  
Vol 9 (12) ◽  
pp. e3891210644
Author(s):  
Amazile Biagioni Maia ◽  
Lorena Simão Marinho ◽  
David Lee Nelson

Cachaça is defined as sugarcane spirit produced in Brazil, but it still lacks references that valorize the aging in native woods. Amburana (Amburana cearensis) is a Brazilian tree widely used in making casks for storing cachaça. Among its phenolic derivatives, coumarin stands out. Its content is determinant in the sensorial characteristics developed in the beverage during the aging process. We propose a simple and rapid method (15 min) that allows the certification of the storage of cachaça in amburana barrels and the determination of the coumarin content. Using high-performance liquid chromatography, the identity of the wood is attested by the peculiarities of the chromatographic profile obtained with a UV detector (274 nm) in an isothermal environment (40 oC). Coumarin was easily identified among the peaks obtained, and it could be quantified using a standard curve.


2018 ◽  
Vol 67 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Lenche Velkoska-Markovska ◽  
Biljana Petanovska-Ilievska ◽  
Aleksandar Markovski

Summary The modern apple production involves the use of large amounts of pesticides that can be found in processed products such as apple juice. Harmful effects of pesticide residues on humans, especially children, are well known, hence the content of pesticide residues in fruit, vegetables and their juices should be controlled. This study presents an application of a new, relatively simple and reliable analytical method for qualitative and quantitative determination of three organophosphorus and one organonitrogen pesticide residues in apple juices. The analysis utilizes reversed-phase high-performance liquid chromatography (RP-HPLC) followed by UV diode array detection. Prior to HPLC analysis, a solid-phase extraction (SPE) was used for analytes concentration and sample clean-up. Specificity, selectivity, linearity, precision, accuracy and limit of quantification (LOQ) were examined to assess the validity of the developed method. The method had satisfactory values of multiple correlation coefficients for calibration curves (R2 ≥ 0.95 ). The precision was evaluated for the retention times and peak areas, and the estimated values for relative standard deviations (RSD) were 0.05 % - 0.18 % and 0.09 % - 0.62 %, respectively, which indicated an excellent precision of the proposed method. Under the established conditions, the recovery of analytes was 93.80 % - 119.41 %, with relative standard deviations below 0.56 %. This method was successfully applied for determination of some organophosphorus and organonitrogen pesticide residues in apple juices which were taken from Macedonian markets. The achieved values for LOQs were low enough compared to the MRLs of the investigated pesticides in apple according to the Regulation (EC) No 396/2005. Detectable residues of the examined pesticides were not found in the analyzed samples.


2020 ◽  
Vol 17 (34) ◽  
pp. 1046-1054
Author(s):  
Ihsan Mahdi SHAHEED ◽  
Saadiyah Ahmed DHAHIR

The triazole, tebuconazole pesticide, was determined in its formulation and also in the river water samples collected from different agriculture areas in the Iraqui city of Kerbala using developed high-performance liquid chromatography method(HPLC) with UV-visible detection, The mobile composition phase was a mixture of acetonitrile:methanol (50:50 v/v) and the column was C18 (250 cm x 4.6 mm,5μm). Also modified dispersive liquidliquid microextraction (DLLME), which is regarded as an ecological -friendly method, was used for the extraction of tebuconazole from water samples using acetonitrile and chloroform as solvents extraction and dispersive agent, respectively. Linearity to maintain the calibration curve was achieved from (0.1-70) μg.mL-1 with a limit of detection(0.053) μg.mL-1 and limit of quantification (0.174) μg.mL-1. Three spiked levels of concentration (1.0, 5.0, and 10) μg.mL-1 were used for the validation of the method. The relative standard deviation (RSD%) was (0.294- 0.813)%, and the percentage recovery was (100.001-100.005). The formulation studies for two different concentrations (10 and 40) μg.mL-1, which prepared from tebuconazole formulation (Raxil ODS2 2%), gave acceptable percentage recovery between (98.956-99.833). The developed method can be used accurately for the determination of tebuconazole in water samples and in the formulation of tebuconazole effectively.


Sign in / Sign up

Export Citation Format

Share Document