analyte molecule
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6319
Author(s):  
Luminita Fritea ◽  
Florin Banica ◽  
Traian Octavian Costea ◽  
Liviu Moldovan ◽  
Luciana Dobjanschi ◽  
...  

Monitoring human health for early detection of disease conditions or health disorders is of major clinical importance for maintaining a healthy life. Sensors are small devices employed for qualitative and quantitative determination of various analytes by monitoring their properties using a certain transduction method. A “real-time” biosensor includes a biological recognition receptor (such as an antibody, enzyme, nucleic acid or whole cell) and a transducer to convert the biological binding event to a detectable signal, which is read out indicating both the presence and concentration of the analyte molecule. A wide range of specific analytes with biomedical significance at ultralow concentration can be sensitively detected. In nano(bio)sensors, nanoparticles (NPs) are incorporated into the (bio)sensor design by attachment to the suitably modified platforms. For this purpose, metal nanoparticles have many advantageous properties making them useful in the transducer component of the (bio)sensors. Gold, silver and platinum NPs have been the most popular ones, each form of these metallic NPs exhibiting special surface and interface features, which significantly improve the biocompatibility and transduction of the (bio)sensor compared to the same process in the absence of these NPs. This comprehensive review is focused on the main types of NPs used for electrochemical (bio)sensors design, especially screen-printed electrodes, with their specific medical application due to their improved analytical performances and miniaturized form. Other advantages such as supporting real-time decision and rapid manipulation are pointed out. A special attention is paid to carbon-based nanomaterials (especially carbon nanotubes and graphene), used by themselves or decorated with metal nanoparticles, with excellent features such as high surface area, excellent conductivity, effective catalytic properties and biocompatibility, which confer to these hybrid nanocomposites a wide biomedical applicability.


2021 ◽  
Vol 4 (1) ◽  
pp. 33-43
Author(s):  
O. Ya. Smirnova ◽  
◽  
Yo. Yo. Yatchyshyn ◽  
S. V. Kolobych ◽  
I. P. Poliuzhyn ◽  
...  

The chromatographic characteristics were investigated for eight aromatic derivatives of 3-chloro-1,4-naphthoquinone under conditions of normal-phase thin-layer chromatography for benzene-based binary mobile phase and such polar solvents as chloroform, acetone, acetonitrile, methanol and propan-2-ol. The slope of linear retention dependencies for the investigated compounds on the concentration of the polar component in the mobile phase satisfactorily correlates with the area occupied by the adsorbed analyte molecule in the stationary phase. The intercept in the Soczewinski equation depends on the polar component of the mobile phase.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2519
Author(s):  
Anastasia Markina ◽  
Alexander Muratov ◽  
Vladislav Petrovskyy ◽  
Vladik Avetisov

Ultra-sensitive elements for nanoscale devices capable of detecting single molecules are in demand for many important applications. It is generally accepted that the inevitable stochastic disturbance of a sensing element by its surroundings will limit detection at the molecular level. However, a phenomenon exists (stochastic resonance) in which the environmental noise acts abnormally: it amplifies, rather than distorts, a weak signal. Stochastic resonance is inherent in non-linear bistable systems with criticality at which the bistability emerges. Our computer simulations have shown that the large-scale conformational dynamics of a short oligomeric fragment of thermosrespective polymer, poly-N-isopropylmethacrylamid, resemble the mechanical movement of nonlinear bistable systems. The oligomers we have studied demonstrate spontaneous vibrations and stochastic resonance activated by conventional thermal noise. We have observed reasonable shifts of the spontaneous vibrations and stochastic resonance modes when attaching an analyte molecule to the oligomer. Our simulations have shown that spontaneous vibrations and stochastic resonance of the bistable thermoresponsive oligomers are sensitive to both the analyte molecular mass and the binding affinity. All these effects indicate that the oligomers with mechanic-like bistability may be utilized as ultrasensitive operational units capable of detecting single molecules.


Author(s):  
David P. Hoogerheide

Nanopore-based sensing of charged biopolymers is a powerful single-molecule method. In aconventional nanopore experiment, a single biological (proteinaceous) or solid-state nanopore perforates a thin membrane that is wetted by, and electrically isolates, two opposing reservoirs of electrolyte solution. A potential is applied across the membrane via external electronics coupled to the electrolyte reservoirs with electrochemical electrodes, actuating the system. The electric field set up by the applied potential in the nanopore and its immediate environment plays two roles: supporting an ionic current through the nanopore, which reports on the properties of the pore and its contents; and acting on analyte molecules to attract them to, and drive them into, the nanopore. The presence of a large biopolymer in the pore modulates the ionic current 𝐼(𝑡). The duration of the ionic current modulation corresponds to the length of time the polymer spends in the pore from capture to its ultimate escape, either by retraction to the reservoir from which it was captured, or by translocation to the opposite reservoir . The probabilities of retraction or translocation, or splitting probabilities, and the corresponding distributions of escape times (𝑡esc), are particularly sensitive to the size and charge of the analyte molecule and have been the focus of much theoretical, computational, and experimental effort. An underlying physical framework in which the distribution of escape times is modeled as a first-passage time from a one-dimensional potential is quantitatively predictive for a wide range of experiments. The complexity of this potential for the general case, however, requires calculations to guide experimental design that can be tedious to implement. PPDiffuse is intended to remove this burden from the nanopore research community and enable convenient, rational design of nanopore experiments with complex substrates such as polypeptides.


Nanoscale ◽  
2020 ◽  
Vol 12 (19) ◽  
pp. 10730-10736
Author(s):  
Jie Zhang ◽  
Eric P. Fahrenthold

Oblique view of a sensing nanoribbon in equilibrium with an analyte molecule.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 103 ◽  
Author(s):  
Madhurantakam Sasya ◽  
K. S. Shalini Devi ◽  
Jayanth K. Babu ◽  
John Bosco Balaguru Rayappan ◽  
Uma Maheswari Krishnan

Metabolic syndrome is a condition that results from dysfunction of different metabolic pathways leading to increased risk of disorders such as hyperglycemia, atherosclerosis, cardiovascular diseases, cancer, neurodegenerative disorders etc. As this condition cannot be diagnosed based on a single marker, multiple markers need to be detected and quantified to assess the risk facing an individual of metabolic syndrome. In this context, chemical- and bio-sensors capable of detecting multiple analytes may provide an appropriate diagnostic strategy. Research in this field has resulted in the evolution of sensors from the first generation to a fourth generation of ‘smart’ sensors. A shift in the sensing paradigm involving the sensing element and transduction strategy has also resulted in remarkable advancements in biomedical diagnostics particularly in terms of higher sensitivity and selectivity towards analyte molecule and rapid response time. This review encapsulates the significant advancements reported so far in the field of sensors developed for biomarkers of metabolic syndrome.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hui Yan ◽  
Zhuan-Di Zheng ◽  
Hong-Fei Wu ◽  
Xiao-Chuang Liu ◽  
An Zhou

AbstractTenuifolin was used as a reliable chemical marker for the quality control of Radix Polygalae. The determination of tenuifolin is challenging because the analyte molecule lacks a suitable chromophore. The aim of this study was to establish a microemulsion high-performance liquid chromatography (MELC) method which is robust and sensitive, and can separate and determine tenuifolin in Radix Polygalae using an oil-in-water (O/W) microemulsion mobile phase. The separations were performed on a C18 (4.6 × 250 mm, 5 μm) column at 25 °C using a flow rate of 1.0 mL/min, and an ultraviolet detection wavelength of 210 nm. The microemulsion mobile phase comprised 2.8% (w/v) sodium dodecyl sulfate (SDS), 7.0% (v/v) n-butanol, 0.8% (v/v) n-octane and 0.1% (v/v) aqueous orthophosphate buffer (H3PO4). The linearity analysis of tenuifolin showed a correlation coefficient of 0.9923 in the concentration range of 48.00–960.00 µg/mL. The accuracy of the method based on three concentration levels ranged from 96.23% to 99.28%; the limit of detection (LOD) was 2.34 µg/mL, and the limit of quantification (LOQ) was 6.76 µg/mL. The results of our study indicated that the optimized MELC method was sensitive and robust, and can be widely applied for the separation and determination of tenuifolin in Radix Polygalae.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Gokhan Demirel ◽  
Rebecca L. M. Gieseking ◽  
Resul Ozdemir ◽  
Simon Kahmann ◽  
Maria A. Loi ◽  
...  

AbstractNanostructured molecular semiconductor films are promising Surface-Enhanced Raman Spectroscopy (SERS) platforms for both fundamental and technological research. Here, we report that a nanostructured film of the small molecule DFP-4T, consisting of a fully π-conjugated diperfluorophenyl-substituted quaterthiophene structure, demonstrates a very large Raman enhancement factor (>105) and a low limit of detection (10−9 M) for the methylene blue probe molecule. This data is comparable to those reported for the best inorganic semiconductor- and even intrinsic plasmonic metal-based SERS platforms. Photoluminescence spectroscopy and computational analysis suggest that both charge-transfer energy and effective molecular interactions, leading to a small but non-zero oscillator strength in the charge-transfer state between the organic semiconductor film and the analyte molecule, are required to achieve large SERS enhancement factors and high molecular sensitivities in these systems. Our results provide not only a considerable experimental advancement in organic SERS figure-of-merits but also a guidance for the molecular design of more sensitive SERS systems.


2019 ◽  
Vol 15 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Mehmet Lütfi Yola

Background: Until now, several methods such as spectroscopic methods and chromatographic techniques have been developed for the determination of biomolecules, drug or heavy metals. Nevertheless, the crucial interference problems are present in these methods. Due to these reasons, more sensitive, favorable portability, low-cost, simple and selective sensors based on nanocomposites are needed in terms of health safety. In the development of electrochemical nanosensor, the nanomaterials such as graphene/graphene oxide, carbon and carbon nitride nanotubes are utilized to improve the sensitivity. Objective: The nanomaterials such as graphene/graphene oxide, carbon and carbon nitride nanotubes have important advantages such as high surface area, electrical conductivity, thermal and mechanical stability. Hence, we presented the highly selective methods for sensitive sensor applications by molecular imprinting technology in literature. This technology is a polymerization method around target molecule. This method provides the specific cavities to analyte molecule on the polymer surface. Hence, the selective sensor is easily created for biomedical and other applications. Novel electrochemical sensors based on nanocomposite whose surface is coated with Molecular Imprinting Polymer (MIP) are developed and then applied to the selective and sensitive detection in this study. Until now, we have presented several reports about nanocomposite based sensor with MIP.


2018 ◽  
Vol 9 (1) ◽  
pp. 27-43 ◽  
Author(s):  
Hadi Beitollahi ◽  
Mohadeseh Safaei ◽  
Somayeh Tajik

The present review focuses on voltammetric and amperometric methods applied for determination of epinephrine (EP) in last five years (2013-2017). Occurrence, role and biological importance of EP, as well as non-electrochemical methods for its assessment, are firstly reviewed. The electrochemical behavior of EP is then illustrated, followed by a description of the voltammetric and amperometric methods for EP content estimation in various media. Different methods for development of electrochemical sensors are reviewed, starting from unmodified electrodes to different composites incorporating carbon nanotubes, ionic liquids or various mediators. From this perspective, the interaction between functional groups of the sensor material and the analyte molecule is discussed, as it is essential for analytical characteristics obtained. The analytical performances of the voltammetric or amperometric chemical and biochemical sensors (linear range of analytical response, sensitivity, precision, stability, response time, etc.) are highlighted. Numerous applications of EP electrochemical sensors in fields like pharmaceutical or clinical analysis where EP represents a key analyte, are also presented.


Sign in / Sign up

Export Citation Format

Share Document