scholarly journals A microemulsion high-performance liquid chromatography (MELC) method for the separation and determination of hydrolyzed tenuifolin in Radix Polygalae

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hui Yan ◽  
Zhuan-Di Zheng ◽  
Hong-Fei Wu ◽  
Xiao-Chuang Liu ◽  
An Zhou

AbstractTenuifolin was used as a reliable chemical marker for the quality control of Radix Polygalae. The determination of tenuifolin is challenging because the analyte molecule lacks a suitable chromophore. The aim of this study was to establish a microemulsion high-performance liquid chromatography (MELC) method which is robust and sensitive, and can separate and determine tenuifolin in Radix Polygalae using an oil-in-water (O/W) microemulsion mobile phase. The separations were performed on a C18 (4.6 × 250 mm, 5 μm) column at 25 °C using a flow rate of 1.0 mL/min, and an ultraviolet detection wavelength of 210 nm. The microemulsion mobile phase comprised 2.8% (w/v) sodium dodecyl sulfate (SDS), 7.0% (v/v) n-butanol, 0.8% (v/v) n-octane and 0.1% (v/v) aqueous orthophosphate buffer (H3PO4). The linearity analysis of tenuifolin showed a correlation coefficient of 0.9923 in the concentration range of 48.00–960.00 µg/mL. The accuracy of the method based on three concentration levels ranged from 96.23% to 99.28%; the limit of detection (LOD) was 2.34 µg/mL, and the limit of quantification (LOQ) was 6.76 µg/mL. The results of our study indicated that the optimized MELC method was sensitive and robust, and can be widely applied for the separation and determination of tenuifolin in Radix Polygalae.

Author(s):  
Appasaheb Bajirao Lawande

ABSTRACT Objective:  The objective of the this work is to develop and validate a novel, simple,rapid and reliable analytical method for separation and determination of R-isomer impurity in Etodolac bulk drug material by normal-phase high-performance liquid chromatography as per International Conference on Harmonization guidelines. Methods: The Etodolac R- isomer and S-isomer were separated on a Chiralcel OD-H (150 x 4.0 mm, 5 micron) column by using Ethanol : n-Hexane:Trifluoroacetic acid (50:50:0.1 v/v.) mobile phase with equipped detector at wavelength 225 nm and 25 °C column oven temperature. The resolution between R-isomer and S-isomer were more than two recorded on chromatogram. The specified method was developed and validated for various parameters like reproducibility, limit of detection, limit of quantification, linearity and range, robustness, solution stability and mobile phase stability according to the International Conference on Harmonization (ICH) guidelines.  Results: Linearity were found for Etodolac R-isomer over the concentration range of 600–6000 ng/ml, with the linear regression (Correlation coefficient R = 0.998) and proved to be robust. Limit of detection and limit of quantification of Etodolac R-isomer was found to be 200 and 600 ng/ml. The retention time of R-isomer was considered to be 2.8 min. The percentage recovery of Etodolac R-isomer has been ranged from 97.0 to 102.0 in bulk drug material sample. The proposed analytical method has been found to be suitable, precise,reliable and accurate for the separation and quantitative determination of Etodolac R-isomer in bulk drug sample.                                                                                                                   Conclusion: A novel, speedy, accurate, precise, reliable and rugged analytical method has been developed and validated for normal phase high performance liquid chromatography to determine R-isomer impurity in Etodolac bulk drugs material as per ICH guideline. Keywords: Etodolac, HPLC, Known Impurity. Normal Phase, Validation.


2021 ◽  
Vol 33 (4) ◽  
pp. 930-936
Author(s):  
Khaldun M. Al Azzam ◽  
Ahmad Makahleh ◽  
Bahruddin Saad

A new simple and sensitive high-performance liquid chromatography (HPLC) method for the determination of formaldehyde in flour samples has been developed. Formaldehyde was quantified after derivatization with a readily available reagent, 2,4,6-trichlorophenyl hydrazine (TCPH) under basic conditions. The formaldehyde-TCPH derivative was eluted with chromatographic mobile phase of 70:30 (v/v) acetonitrile:water at a flow rate of 1.0 mL min–1; wavelength, 222 nm; injection volume, 50 μL, using a C18 ODS Hypersil column (250 mm × 4.5 mm, 5 μm). The calibration curve was linear over the range of 0.001-10 μg mL-1 with R2 = 0.999. Recoveries at three different concentration levels (0.1, 1.0 and 5 μg mL-1) ranged from 92.0-101.7% with RSD less than of 2.2%. The limit of detection (LOD) and limit of quantification (LOQ) were 0.3 and 1.0 ng mL-1, respectively. The developed method was used for the determination of formaldehyde in various flour-based samples.


Author(s):  
Muhammad Fawad Rasool ◽  
Umbreen Fatima Qureshi ◽  
Nazar Muhammad Ranjha ◽  
Imran Imran ◽  
Mouqadus Un Nisa ◽  
...  

AbstractTh accurate rapid, simple and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of captopril (CAP). Chromatographic separation was accomplished using prepacked ODSI C18 column (250 mm × 4.6 mm with 5 μm particle size) in isocratic mode, with mobile phase consisting of water: acetonitrile (60:40 v/v), pH adjusted to 2.5 by using 85% orthophosphoric acid at a flow rate of 1 mL/min and UV detection was performed at 203 nm. RP-HPLC method used for the analysis of CAP in mobile phase and rabbit plasma was established and validated as per ICH-guidelines. It was carried out on a well-defined chromatographic peak of CAP was established with a retention time of 4.9 min and tailing factor of 1.871. The liquid–liquid extraction method was used for extraction of CAP from the plasma. Excellent linearity (R2 = 0.999) was shown over range 3.125–100 µg/mL with mean percentage recoveries ranges from 97 to 100.6%. Parameters of precision and accuracy of the developed method meet the established criteria. Intra and inter-day precision (% relative standard deviation) study was also performed which was less than 2% which indicate good reproducibility of the method. The limit of detection (LOD) and quantification for the CAP in plasma were 3.10 and 9.13 ng/mL respectively. The method was suitably validated and successfully applied to the determination of CAP in rabbit plasma samples.


2020 ◽  
Vol 8 (2) ◽  
pp. 1-7
Author(s):  
Ihsan M. Shaheed ◽  
Saadiyah A. Dhahir

The quinolizindine alkaloid compound, oxymatrine pesticide, was analysis in the river water samples collected from different agriculture areas in the Iraqi city of Kerbala and also in its formulation using developed reverse-phase high-performance liquid chromatography method. Acetonitrile:methanol (60:40 v/v) was chosen as mobile phase at pH (7.0), flow rate 0.5 mL/min, and 20 µL as volume injection. Modified ecological-friendly method, dispersive liquid-liquid microextraction, was used for the extraction of oxymatrine from water samples. Linearity study was constructed from 0.1 to 70 μg/mL at λmax 205 nm. The limit of detection and limit of quantification were 0.025 and 0.082 μg/mL, respectively, and the relative standard deviation (RSD) % was 0.518%. Three spiked levels of concentration (20.0, 40.0, and 70.0 μg/mL) were used for the validation method. The percentage recovery for the three spiked samples was ranged between 98.743 and 99.432 and the RSD% was between 0.051 and 0.202%, the formulation studies of oxymatrine between 99.487 and 99.798, and the RSD% was ranged from 0.045 to 0.057%. The developed method can be used accurately and selectively for the determination of oxymatrine in environmental samples and in the formulation.


2020 ◽  
Vol 17 (34) ◽  
pp. 1046-1054
Author(s):  
Ihsan Mahdi SHAHEED ◽  
Saadiyah Ahmed DHAHIR

The triazole, tebuconazole pesticide, was determined in its formulation and also in the river water samples collected from different agriculture areas in the Iraqui city of Kerbala using developed high-performance liquid chromatography method(HPLC) with UV-visible detection, The mobile composition phase was a mixture of acetonitrile:methanol (50:50 v/v) and the column was C18 (250 cm x 4.6 mm,5μm). Also modified dispersive liquidliquid microextraction (DLLME), which is regarded as an ecological -friendly method, was used for the extraction of tebuconazole from water samples using acetonitrile and chloroform as solvents extraction and dispersive agent, respectively. Linearity to maintain the calibration curve was achieved from (0.1-70) μg.mL-1 with a limit of detection(0.053) μg.mL-1 and limit of quantification (0.174) μg.mL-1. Three spiked levels of concentration (1.0, 5.0, and 10) μg.mL-1 were used for the validation of the method. The relative standard deviation (RSD%) was (0.294- 0.813)%, and the percentage recovery was (100.001-100.005). The formulation studies for two different concentrations (10 and 40) μg.mL-1, which prepared from tebuconazole formulation (Raxil ODS2 2%), gave acceptable percentage recovery between (98.956-99.833). The developed method can be used accurately for the determination of tebuconazole in water samples and in the formulation of tebuconazole effectively.


2013 ◽  
Vol 781-784 ◽  
pp. 1708-1711 ◽  
Author(s):  
Yi Qing Yang ◽  
Qian Wang ◽  
Qiao Wang ◽  
Shi Jie Yan

HPLC (High Performance Liquid Chromatography) method for chloramphenicol residues in freshwater fish was developed. The samples were extracted with ethyl acetate. The LC was performed on a C18 column, mobile phase consisted of methanol-water (45:55 v/v) and eluted at 0.2mL/min at 20°C, inject volume was 20μl. The linear rang for chloramphenicol residual is within 0.5-20μg/mL, the limit of detection is 0.01ng/g. The average recovery is 80.06%-92.71%, and the RSD is 1.46%-5.61%. This method is employed to analyze freshwater fishes, such as catfish, chub and carp.


2016 ◽  
Vol 19 (3) ◽  
pp. 559-565 ◽  
Author(s):  
E. Kowalczyk ◽  
E. Patyra ◽  
A. Grelik ◽  
K. Kwiatek

Abstract A high performance liquid chromatography combined with fluorescence detection (HPLC-FLD) method was developed for determination of five ergot alkaloids (EA): ergometrine, ergotamine, ergocornine, ergocrypine and ergocristine in animal feedingstuffs. The method was based on the application of QuEChERS salts for extraction and modified QuEChERS dispersive SPE for the cleanup step. Alkaloids separation was performed on a C18, 250 mm x 4.6 mm, 5 μm column with the mobile phase containing ammonium carbonate and acetonitrile. The excitation and emission wavelengths were 330 and 420 nm respectively. The method was validated according to the Commission Decision 2002/657/EC and all parameters are in agreement with the requirements of the Decision. Linearity was determined for the concentration range of 25-400 μg/kg. The coefficient of determination (R2) for all curves was from 0.985 to 0.996. The limit of detection (LOD) was in the range 3.23 to 6.53 μg/kg and the limit of quantification (LOQ) from 11.78 to 13.06 μg/kg. The decision limit (CCα) ranged from 29.56 to 43.08 μg/kg and detection capability (CCβ) from 40.65 to 51.01 μg/kg. The highest coefficient of variation (CV) for repeatability was 14.3% and for reproducibility 15.4%.


2012 ◽  
Vol 12 (2) ◽  
pp. 201-205 ◽  
Author(s):  
Yuni Retnaningtyas

At present, inulin is often added to multivitamin syrup product. The determination of the component of preparation both qualitatively and quantitatively is important to ensure quality of the product. This research is aimed to develop a high performance liquid chromatography method to analyze inulin in multivitamin syrup preparation. Separation of inulin from the sample, was performed using Aminex column HPX-87H (300 x 7.8 mm) Ion Exclusion at a temperature of 80 °C with isocratic elution system using deionized water as mobile phase at a flow rate of 0.5 mL/min, and detected by using refractive index detector. This method validation showed a good linearity with correlation coefficient (r) of 0.999 while the coefficient of variation of the regression function (Vx0) was 2.00%. The limit of detection (LOD) and the limit of quantification (LOQ) of the method were respectively 0.12 mg/mL and 0.37 mg/mL. The mean absolute recovery of inulin from the simulation sample was 99.42% and the method precision was less than 2%. The proposed method has been applied to the determination of inulin in commercial multivitamin syrup and the recovery of label claim was 99.9 mg/100 mL. The proposed HPLC method is rapid, simple, and selective for routine analysis.


Author(s):  
Arun Kumar Kuna ◽  
Ganapaty Seru ◽  
Gadela Venkata Radha

 Objective: The present study is to develop a simple, specific, and validated reverse-phase high-performance liquid chromatography (HPLC) method for the determination of imatinib mesylate and its dimer impurity in pharmaceutical dosage form.Methods: A HPLC instrument incorporated with column HiQ Sil C18 (250 mm × 4.6 mm, 5 μm), mobile phase as methanol and acetate buffer pH 3.5 in the ratio of 80:20 v/v was used for the determination of the imatinib mesylate and its dimer impurity. The detection wavelength was set at 273 nm. The flow rate of the mobile phase was 1.0 mL/min.Results: The retention time for imatinib mesylate was 8.060, and for dimer impurity, it was 11.398. The calibration plot was linear (R2=0.9971) and the % mean recoveries for imatinib mesylate were in the range of 99.83–101.57, and for dimer impurity, it was in the range of 98.16–99.18. The limit of detection concentration was found to be 0.570 μg/ml for imatinib mesylate and 0.033 μg/ml dimer impurity and limit of quantification concentration was 1.728 μg/ml for imatinib mesylate and 0.099 μg/ml dimer impurity.Conclusion: The projected method was validated and successfully functional for the estimation of imatinib mesylate and dimer impurity in formulations. It can be adopted apparently for routine quality control and research tests.


1994 ◽  
Vol 59 (3) ◽  
pp. 569-574 ◽  
Author(s):  
Josef Královský ◽  
Marta Kalhousová ◽  
Petr Šlosar

The reversed-phase high-performance liquid chromatography of some selected, industrially important aromatic sulfones has been investigated. The chromatographic behaviour of three groups of aromatic sulfones has been studied. The optimum conditions of separation and UV spectra of the sulfones and some of their hydroxy and benzyloxy derivatives are presented. The dependences of capacity factors vs methanol content in mobile phase are mentioned. The results obtained have been applied to the quantitative analysis of different technical-grade samples and isomer mixtures. For all the separation methods mentioned the concentration ranges of linear calibration curves have been determined.


Sign in / Sign up

Export Citation Format

Share Document