scholarly journals Bench scale study of moving bed biofilm reactor application as pre-treatment of raw water for water treatment plant (Case study: Pesanggrahan River)

2019 ◽  
Vol 270 ◽  
pp. 04009
Author(s):  
Rhefa Fauza Setiani ◽  
Setyo Sarwanto Moersidik ◽  
Sandyanto Adityosulindro

The quality of surface water in Jakarta is on a serious polluted status. In order to reduce the Water Treatment processing load, a pre-treatment process is needed to eliminate parameters such as organic matter, ammonia, color, taste, and odor. This treatment generally uses chemical and physical processes, such as chlorination and activated carbon that produce harmful byproducts. Moving Bed Biofilm Reactor (MBBR) is one of the solutions developed to reduce the nutrient and organic levels in raw water. This study aims to improve the quality of raw water, by reducing the concentration of COD, NH3-N, Phosphate, and TSS before entering the conventional process. Reactor performance is assessed based on contaminant removal efficiency with variation of residence time (1 hour, 1.5 hours, 2 hours). The reactor is operated by using Kaldness K1 as the medium and oxygen supply of 7 L/min. The optimum residence time is 1,5 hours with the ability to remove COD, NH3-N, Phosphate, TSS 51.8% ± 0.2; 54.3% ± 0.28; 52.6% ± 0.19; and 77.7% ± 0.14 respectively. Based on the optimum residence time, the kinetics of the ammonia removal rate in MBBR takes place at zero order, with a rate constant removal of 0.0056 g/m2.day. The results showed that the higher concentration of ammonia, and organic contaminants treated, the higher the efficiency of MBBR. Apart from water quality improvement, pre-treatment process using MBBR can reduce coagulant dose from 50 mg/L to 9 mg/L, to decrease raw water turbidity from 135 NTU to 0.68 NTU before entering the coagulation-flocculation unit.

2002 ◽  
Vol 45 (12) ◽  
pp. 321-328 ◽  
Author(s):  
G. Andreottola ◽  
P. Foladori ◽  
M. Ragazzi ◽  
R. Villa

Dairy raw wastewater is characterised by high concentrations and fluctuations of organic matter and nutrient loads related to the discontinuity in the cheese production cycle and machinery washing. The applicability of a Moving Bed Biofilm Reactor (MBBR) filled with FLOCOR-RMP® plastic media to the treatment of dairy wastewater was evaluated in a pilot-plant. COD fractionation of influent wastewater, MBBR performance on COD and nutrient removal were investigated. A removal efficiency of total COD over 80% was obtained with an applied load up to 52.7 gCOD m−2 d−1 (corresponding to 5 kgCOD m−3d−1). The COD removal kinetics for the MBBR system was assessed. The order of the kinetics resulted very close to half-order in the case of a biofilm partially penetrated by the substrate. The nitrogen removal efficiency varied widely between 13.3 and 96.2% due to the bacterial synthesis requirement. The application of a MBBR system to dairy wastewater treatment may be appropriate when upgrading overloaded activated sludge plants or in order to minimise reactor volumes in a pre-treatment.


2014 ◽  
Vol 675-677 ◽  
pp. 539-542 ◽  
Author(s):  
Guang Meng Ren ◽  
Yu Pan ◽  
Xiu Min Yang ◽  
Yan Yun Qiao ◽  
Hong Wei Li ◽  
...  

Wastewater containing oil and polyacylamide is a kind of organic wastewater, which is hard to treat. The combined process of moving-bed biofilm reactor and sulphate-reducing bacteria was used to treat the wastewater. Operating conditions of moving-bed biofilm reactor and sulphate-reducing bacteria were studied. Results indicate that the oil removal efficiency by moving-bed biofilm reactor can reach above 90% with 9 hours hydraulic retention time at 25°C, but it has no effect on polyacylamide. Sulphate-reducing bacteria can degrade polyacylamide, and polyacylamide conversion is about 50% at 37°C with 4 days culture time and 9ml inoculation size. The effluent quality of wastewater containing oil and polyacylamide can meet requirements of the first level in integrated wastewater discharge standard.


2013 ◽  
Vol 777 ◽  
pp. 309-313
Author(s):  
Zong Zheng Yang ◽  
Zhi Meng Yang ◽  
Jin Guo Cao ◽  
Yuan Yuan Jia ◽  
Jun Xia Xu

Papermaking wastewater mainly consists of black liquor, intermediate wastewater and white water. It suffers from its heavy amount, high level suspended solids and poor biodegradable property. In this paper, a combination of fixed bed and moving bed biofilm reactor was conducted to treat paper making wastewater in order to make full use of the advantages of both fixed bed and moving bed. As a result, the average values of COD, NH3-N and SS in effluent are 57.01 mg/L, 1.74 mg/L and 38 mg/L, respectively. The quality of the effluent could meet the demands of the Chinese standards for papermaking industrial water discharge pollutant.


Sign in / Sign up

Export Citation Format

Share Document