Dairy wastewater treatment in a moving bed biofilm reactor

2002 ◽  
Vol 45 (12) ◽  
pp. 321-328 ◽  
Author(s):  
G. Andreottola ◽  
P. Foladori ◽  
M. Ragazzi ◽  
R. Villa

Dairy raw wastewater is characterised by high concentrations and fluctuations of organic matter and nutrient loads related to the discontinuity in the cheese production cycle and machinery washing. The applicability of a Moving Bed Biofilm Reactor (MBBR) filled with FLOCOR-RMP® plastic media to the treatment of dairy wastewater was evaluated in a pilot-plant. COD fractionation of influent wastewater, MBBR performance on COD and nutrient removal were investigated. A removal efficiency of total COD over 80% was obtained with an applied load up to 52.7 gCOD m−2 d−1 (corresponding to 5 kgCOD m−3d−1). The COD removal kinetics for the MBBR system was assessed. The order of the kinetics resulted very close to half-order in the case of a biofilm partially penetrated by the substrate. The nitrogen removal efficiency varied widely between 13.3 and 96.2% due to the bacterial synthesis requirement. The application of a MBBR system to dairy wastewater treatment may be appropriate when upgrading overloaded activated sludge plants or in order to minimise reactor volumes in a pre-treatment.

2020 ◽  
Vol 6 ◽  
pp. 340-344
Author(s):  
Andreia D. Santos ◽  
Rui C. Martins ◽  
Rosa M. Quinta-Ferreira ◽  
Luis M. Castro

2017 ◽  
Vol 77 (4) ◽  
pp. 1027-1034 ◽  
Author(s):  
Yan-Xiang Cui ◽  
Di Wu ◽  
Hamish R. Mackey ◽  
Ho-Kwong Chui ◽  
Guang-Hao Chen

Abstract Sulfur-oxidizing autotrophic denitrification (SO-AD) was investigated in a laboratory-scale moving-bed biofilm reactor (MBBR) at a sewage temperature of 22 °C. A synthetic wastewater with nitrate, sulfide and thiosulfate was fed into the MBBR. After 20 days' acclimation, the reduced sulfur compounds were completely oxidized and nitrogen removal efficiency achieved up to 82%. The operation proceeded to examine the denitrification by decreasing hydraulic retention time (HRT) from 12 to 4 h in stages. At steady state, this laboratory-scale SO-AD MBBR achieved the nitrogen removal efficiency of 94% at the volumetric loading rate of 0.18 kg N·(mreactor3·d)−1. The biofilm formation was examined periodically: the attached volatile solids (AVS) gradually increased corresponding to the decrease of HRT and stabilized at about 1,300 mg AVS·Lreactor−1 at steady state. This study demonstrated that without adding external organic carbon, SO-AD can be successfully applied in moving-bed carriers. The application of SO-AD MBBR has shown the potential for sulfur-containing industrial wastewater treatment, brackish wastewater treatment and the upgrading of the activated sludge system. Moreover, the study provides direct design information for the full-scale MBBR application of the sulfur-cycle based SANI process.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Nusa Idaman Said ◽  
Teguh Iman Santoso

One of the alternative technologies that could be used for domestic waste water treatment is the Moving Bed Biofilm Reactor (MBBR). MBBR in principle is activated sludge that is increased by adding media in to the reactor, so there are two treatments process happened inside, suspended growth and attached growth. This research is using bioball as a media which has surface area of ±210 m2/m3 by 20% volume of reactor volume. Wastewater treatment by MBBR uses variations of Hydraulic Retention time (HRT) 12, 8, 6, and 4 hours, then the parameters measured were BOD, COD, TSS, temperature, and pH. Result of the study shows that within HRT for 12 hours in aeration tank, removal efficiency of COD is 81,37%, BOD is 82,4%, and TSS is 90,05%. HRT for 8 hours, COD removal efficiency is 88,72%, BOD is 89,7%, and TSS is 92,06%. HRT for 6 hours, COD removal efficiency is 85,48%, BOD is 80,15%, and TSS is 94,85%. HRT for 4 hours, COD removal efficiency is 81,07%, BOD is 87,88%, and TSS is 94,86%. With a retention time of 4 hours, the effluent results domestic wastewater treatment using MBBR has met quality standards in accordance with KEPMEN LH no. 112 of 2003 on Domestic Wastewater Quality Standard and Jakarta Governor Regulation no. 122 of 2005 on Domestic Wastewater Management in Special Province of Jakarta. Keywords: Domestic wastewater, MBBR, bioball.


2015 ◽  
Vol 1113 ◽  
pp. 806-811 ◽  
Author(s):  
Lariyah Mohd Sidek ◽  
Hairun Aishah Mohiyaden ◽  
Hidayah Basri ◽  
Gasim Hayder Ahmed Salih ◽  
Ahmad Hussein Birima ◽  
...  

Moving Bed Biofilm Reactor (MBBR) systems have been proven as an effective technology for water treatment and have been used for Biochemical Oxygen Demand/Chemical Oxygen Demand (BOD/COD-removal), as well as for nitrification and denitrification in municipal and industrial wastewater treatment. Conventional Activated Sludge (CAS), in particular, has been extensively used in wastewater treatment since decades ago. In this study, physical performance results for both MBBR and CAS were compared and evaluated on laboratory scale basis. The study aims to identify the best system performance in terms of constituent removal efficiency for effective management of the river purification plant. A novel parallel MBBR and CAS pilot plant were fabricated and operated to compare the physical performance of MBBR and CAS. Analysis of the performances for MBBR and CAS show, MBBR has higher COD (85%), AN (75%) and TSS (80%) removal rate compared to CAS COD (53%), AN (53%) and TSS (69%). For BOD removal rate, CAS shows 68% removal rate whereas MBBR shows only 65%. Thus CAS has shown slightly higher removal rate than MBBR. In terms of sludge production, MBBR sludge is less than CAS. Overall performance proves that MBBR has better rate of constituent removal efficiency compared to CAS in the laboratory basis study.


2000 ◽  
Vol 41 (1) ◽  
pp. 177-185 ◽  
Author(s):  
G. Andreottola ◽  
P. Foladori ◽  
M. Ragazzi

The aim of this study was to evaluate the performance of a full-scale upgrading of an existing RBC wastewater treatment plant with a MBBR (Moving Bed Biofilm Reactor) system, installed in a tank previously used for sludge aerobic digestion. The full-scale plant is located in a mountain resort in the North-East of Italy. Due to the fact that the people varied during the year's seasons (2000 resident people and 2000 tourists) the RBC system was insufficient to meet the effluent standards. The MBBR applied system consists of the FLOCOR-RMP®plastic media with a specific surface area of about 160 m2/m3 (internal surface only). Nitrogen and carbon removal from wastewater was investigated over a 1-year period, with two different plant lay-outs: one-stage (only MBBR) and two stage system (MBBR and rotating biological contactors in series). The systems have been operated at low temperature (5–15°C). 50% of the MBBR volume (V=79 m3) was filled. The organic and ammonium loads were in the average 7.9 gCOD m−2 d−1 and 0.9 g NH4−N m−2 d−1. Typical carbon and nitrogen removals in MBBR at temperature lower than 8°C were respectively 73% and 72%.


2021 ◽  
Vol 212 ◽  
pp. 112-120
Author(s):  
Anh Van Ngo ◽  
Oanh Hoang Thi Le ◽  
Quan Truong Nguyen ◽  
Hidenari Yasui ◽  
Khai Manh Nguyen ◽  
...  

1992 ◽  
Vol 26 (3-4) ◽  
pp. 703-711 ◽  
Author(s):  
B. Rusten ◽  
H. Ødegaard ◽  
A. Lundar

A novel moving bed biofilm reactor has been developed, where the biofilm grows on small, free floating plastic elements with a large surface area and a density slightly less than 1.0 g/cm3. The specific biofilm surface area can be regulated as required, up to a maximum of approximately 400 m2/m3. The ability to remove organic matter from concentrated industrial effluents was tested in an aerobic pilot-plant with two moving bed biofilm reactors in series and a specific biofilm surface area of 276 m2/m3. Treating dairy wastewater, the pilot-plant showed 85% and 60% COD removal at volumetric organic loading rates of 500 g COD/m3h and 900 g COD/m3h respectively. Based on the test results, the moving bed biofilm reactors should be very suitable for treatment of food industry effluents.


1993 ◽  
Vol 28 (10) ◽  
pp. 351-359 ◽  
Author(s):  
H. Ødegaard ◽  
B. Rusten ◽  
H. Badin

In 1988 the State Pollution Control Authority in Norway made recommendations regarding process designs for small wastewater treatment plants. Amongst these were recommendations for biological/chemical plants where biofilm reactors were used in combination with pretreatment in large septic tanks and chemical post treatment. At the same time the socalled “moving bed biofilm reactor” (MBBR) was developed by a Norwegian company. In this paper, experiences from a small wastewater treatment plant, based on the MBBR and on the recommendations mentioned, will be presented.


Sign in / Sign up

Export Citation Format

Share Document