scholarly journals A robust 3D finite element model for concrete columns confined by FRCM system

2019 ◽  
Vol 281 ◽  
pp. 01006 ◽  
Author(s):  
Majid M.A. Kadhim ◽  
Mohammed J Altaee ◽  
Ali Hadi Adheem ◽  
Akram R. Jawdhari

Fibre reinforced cementitious matric (FRCM) is a recent application of fibre reinforced polymer (FRP) reinforcement, developed to overcome several limitations associated with the use of organic adhesive [e.g. epoxies] in FRPs. It consists of two dimensional FRP mesh saturated with a cement mortar, which is inorganic in nature and compatible with concrete and masonry substrates. In this study, a robust three-dimensional (3D) finite element (FE) model has been developed to study the behaviour of slender reinforced concrete columns confined by FRCM jackets, and loaded concentrically and eccentrically. The model accounts for material nonlinearities in column core and cement mortar, composite failure of FRP mesh, and global buckling. The model response was validated against several laboratory tests from literature, comparing the ultimate load, load-lateral deflection and failure mode. Maximum divergence between numerical and experimental results was 12%. Following the validation, the model will be used later in a comprehensive parametric analysis to gain a profound knowledge of the strengthening system, and examine the effects of several factors expected to influence the behaviour of confined member.

Author(s):  
Qingzhen Lu ◽  
Zhixun Yang ◽  
Jun Yan ◽  
Hailong Lu ◽  
Jinlong Chen ◽  
...  

Umbilical is an important equipment in the subsea production to supply a connection between the floater and the subsea well. Analyzing strength and fatigue behaviors under bending is a key requirement to assure safety. An analytical model is proposed for predicting the bending behavior of a steel tube wounded helically around a frictionless cylinder. A full three-dimensional (3D) finite element (FE) model of an umbilical is developed by considering the frictions and contacts among its components. The numerical results of the bending stress of a steel tube were validated against that of the analytical model. The impacts of friction coefficients on the bending stress, contact pressure, and friction stress have been further investigated by the established FE model.


2000 ◽  
Author(s):  
Subramanya Uppala ◽  
Robert X. Gao ◽  
Scott Cowan ◽  
K. Francis Lee

Abstract The strength and stability of the lumbar spine are determined not only by the bone and muscles, but also by the visco-elastic structures and the interplay between the different components of the spine, such as ligaments, capsules, annulus fibrosis, and articular cartilage. In this paper we present a non-linear three-dimensional Finite Element model of the lumbar spine. Specifically, a three-dimensional FE model of the L4-5 one-motion segment/2 vertebrae was developed. The cortical shell and the cancellous bone of the vertebral body were modeled as 3D isoparametric eight-nodal elements. Finite element models of spinal injuries with fixation devices are also developed. The deformations across the different sections of the spine are observed under the application of axial compression, flexion/extension, and lateral bending. The developed FE models provided input to both the fixture design and experimental studies.


2019 ◽  
Vol 43 (4) ◽  
pp. 443-453
Author(s):  
Stephen M. Handrigan ◽  
Sam Nakhla

An investigation to determine the effect of porosity concentration and location on elastic modulus is performed. Due to advancements in testing methods, the manufacturing and testing of microbeams to obtain mechanical response is possible through the use of focused ion beam technology. Meanwhile, rigorous analysis is required to enable accurate extraction of the elastic modulus from test data. First, a one-dimensional investigation with beam theory, Euler–Bernoulli and Timoshenko, was performed to estimate the modulus based on load-deflection curve. Second, a three-dimensional finite element (FE) model in Abaqus was developed to identify the effect of porosity concentration. Furthermore, the current work provided an accurate procedure to enable accurate extraction of the elastic modulus from load-deflection data. The use of macromodels such as beam theory and three-dimensional FE model enabled enhanced understanding of the effect of porosity on modulus.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Namkeun Kim ◽  
You Chang ◽  
Stefan Stenfelt

A three-dimensional finite-element (FE) model of a human dry skull was devised for simulation of human bone-conduction (BC) hearing. Although a dry skull is a simplification of the real complex human skull, such model is valuable for understanding basic BC hearing processes. For validation of the model, the mechanical point impedance of the skull as well as the acceleration of the ipsilateral and contralateral cochlear bone was computed and compared to experimental results. Simulation results showed reasonable consistency between the mechanical point impedance and the experimental measurements when Young’s modulus for skull and polyurethane was set to be 7.3 GPa and 1 MPa with 0.01 and 0.1 loss factors at 1 kHz, respectively. Moreover, the acceleration in the medial-lateral direction showed the best correspondence with the published experimental data, whereas the acceleration in the inferior-superior direction showed the largest discrepancy. However, the results were reasonable considering that different geometries were used for the 3D FE skull and the skull used in the published experimental study. The dry skull model is a first step for understanding BC hearing mechanism in a human head and simulation results can be used to predict vibration pattern of the bone surrounding the middle and inner ear during BC stimulation.


2017 ◽  
Vol 36 (2) ◽  
pp. 35-45
Author(s):  
Henry M. Kiwelu

Experiments were performed on scaled glue laminated bending specimens to observetime dependent development of deformations during drying and wetting. Measurementsdetermined changes in the average moisture content and external shape and dimensionsbetween when specimens were placed into constant or variable climates. Alterations inthe external shape and dimensions reflected changes in the average value anddistribution of moisture and mechanosorptive creep in the glulam. The results are beingused to develop a sequentially-coupled three-dimensional hygrothermal Finite Element(FE) model for predicting temporally varying internal strains and external deformationsof drying or wetting solid wood structural components. The model implies temporallyvarying, and eventual steady, state internal stress distributions in members based onelastic and creep compliances that represent wood within glulam as a continuousorthotropic homogenised material. Thus, predictions are consistent with smearedengineering stress analysis methods rather than being a physically correct analogue ofhow solid wood behaves. This paper discusses limitations of and intended improvementsto the FE modelling. Complementary investigations are underway to address otheraspects of the hygrothermal behaviour of structural members of wood and othermaterials (e.g. reinforced concrete) embedded within superstructure frameworks ofmulti-storey hybrid buildings.


2017 ◽  
Vol 7 ◽  
pp. 87-93
Author(s):  
Harshal Ashok Patil ◽  
Pawankumar Dnyandeo Tekale ◽  
Veerendra V. Kerudi ◽  
Jitendra S. Sharan ◽  
Ratnadip Arunrao Lohakpure ◽  
...  

ObjectiveThe study conducted to assess the effects of a fixed functional appliance (Forsus Fatigue Resistant Device; 3M Unitek, Monrovia, CA, USA) on the mandible with three-dimensional (3D) finite element stress analysis.Materials and MethodsA 3D finite element model of mandible with miniplate at mandibular symphysis was prepared using SolidEdge software along with the plate geometry. The changes were deliberated with the finite element method, in the form of highest von Mises stress and maximum principal stress regions.ResultsMore areas of stress were seen in the model of the mandible at cortical bone in canine region at bone and miniplate interface.ConclusionsThis fixed functional appliance studied by finite element model analysis caused more von Mises stress and principal stress in both the cortical bone and the condylar region.


1995 ◽  
Vol 117 (3) ◽  
pp. 272-278 ◽  
Author(s):  
M. Dalstra ◽  
R. Huiskes ◽  
L. van Erning

Due to both its shape and its structural architecture, the mechanics of the pelvic bone are complex. In Finite Element (FE) models, these aspects have often been (over) simplified, sometimes leading to conclusions which did not bear out in reality. The purpose of this study was to develop a more realistic FE model of the pelvic bone. This not only implies that the model has to be three-dimensional, but also that the thickness of the cortical shell and the density distribution of the trabecular bone throughout the pelvic bone have to be incorporated in the model in a realistic way. For this purpose, quantitative measurements were performed on computer tomography scans of several pelvic bones, after which the measured quantities were allocated to each element of the mesh individually. To validate this FE model, two fresh pelvic bones were fitted with strain gages and loaded in a testing machine. Stresses calculated from the strain data of this experiment were compared to the results of a simulation with the developed pelvic FE model.


2005 ◽  
Vol 288 (4) ◽  
pp. H1844-H1850 ◽  
Author(s):  
Alan B. C. Dang ◽  
Julius M. Guccione ◽  
Jacob M. Mishell ◽  
Peng Zhang ◽  
Arthur W. Wallace ◽  
...  

Infarcted segments of myocardium demonstrate functional impairment ranging in severity from hypokinesis to dyskinesis. We sought to better define the contributions of passive material properties (stiffness) and active properties (contracting myocytes) to infarct thickening. Using a finite-element (FE) model, we tested the hypothesis that infarcted myocardium must contain contracting myocytes to be akinetic and not dyskinetic. A three-dimensional FE mesh of the left ventricle was developed with echocardiographs from a reperfused ovine anteroapical infarct. The nonlinear stress-strain relationship for the diastolic myocardium was anisotropic with respect to the local muscle fiber direction, and an elastance model for active fiber stress was incorporated. The diastolic stiffness ( C) and systolic material property (isometric tension at longest sarcomere length and peak intracellular calcium concentration, Tmax) of the uninfarcted remote myocardium were assumed to be normal ( C = 0.876 kPa, Tmax = 135.7 kPa). Diastolic and systolic properties of the infarct necessary to produce akinesis, defined as an average radial strain between −0.01 and 0.01, were determined by assigning a range of diastolic stiffnesses and scaling infarct Tmax to represent the percentage of contracting myocytes between 0% and 100%. As C was increased to 11 times normal ( C = 10 kPa) the percentage of Tmax necessary for akinesis increased from 20% to 50%. Without contracting myocytes, C = 250 kPa was necessary to achieve akinesis. If infarct stiffness is <285 times normal, contracting myocytes are required to prevent dyskinetic infarct wall motion.


2006 ◽  
Vol 129 (2) ◽  
pp. 184-194 ◽  
Author(s):  
M. N. Bettaïeb ◽  
P. Velex ◽  
M. Ajmi

The present work is aimed at predicting the static and dynamic behavior of geared transmissions comprising flexible components. The proposed model adopts a hybrid approach, combining classical beam elements, elastic foundations for the simulation of tooth contacts, and substructures derived from three-dimensional (3D) finite element grids for thin-rimmed gears and their supporting shafts. The pinion shaft and body are modeled via beam elements which simulate bending, torsion and traction. Tooth contact deflections are described using time-varying elastic foundations (Pasternak foundations) connected by independent contact stiffness. In order to account for thin-rimmed gears, a 3D finite element model of the gear (excluding teeth) is set up and a pseudo-modal reduction technique is used prior to solving the equations of motion. Depending on the gear structure, the results reveal a potentially significant influence of thin rims on both quasi-static and dynamic tooth loading.


2011 ◽  
Vol 105-107 ◽  
pp. 1768-1772 ◽  
Author(s):  
Mohammad Mahdi Kheirikhah ◽  
Seyyed Mohammad Reza Khalili ◽  
Keramat Malekzadeh Fard

In the present paper, an accurate 3D finite element model is presented for bucking analysis of soft-core rectangular sandwich plates. The sandwich plate is composed of three layers: top and bottom skins and core layer. Finite element model of the problem has been constructed in the ANSYS 11.0 standard code area. The effect of geometrical parameters of the sandwich plate is studied. Comparison of the present results with those of plate theories confirms the accuracy of the proposed model. The overall buckling loads calculated by FE model are higher than that of the accurate results and the maximum discrepancy is less than 10 percent.


Sign in / Sign up

Export Citation Format

Share Document