scholarly journals Wing-Propeller Interaction

2019 ◽  
Vol 304 ◽  
pp. 02019
Author(s):  
Nikola Zizkovsky ◽  
Jan Klesa

Paper describes the effect of the distributed electric propulsion system (DEP) on the aerodynamic characteristics of the airplane wing. Using CFD simulation is described the influence of the wake of the propeller on the wing for various ratios of the propeller diameter to the wing chord. Unlike the normal case of wing-propeller interaction, periodic boundary conditions are used, i.e. a rectangular wing with infinite span with propellers installed periodically its span is considered. A wind tunnel experiment will be used to verify the calculations. Propeller thrust is set to compensate for airplane drag in horizontal flight, i.e. equal to the wing segment drag, which is increased by the corresponding part of the expected drag of other parts of the airplane. The increase of the drag was determined by the aerodynamic design of a generic airplane with DEP. The benefit of the work are the input data usable for the conceptual design of the airplane wing with DEP.

Author(s):  
S. Kouidri ◽  
F. Djaafer ◽  
T. Belamri ◽  
R. Rey

The purpose of this study is to determine the effect of the sweep angle used in axial flow fans on their aerodynamic and acoustic behavior. To do so, two fans, having the same aerodynamic characteristics, were designed with forward and radial sweep angles. The 3D numerical simulation allowed obtaining steady and unsteady loading on the blades. Instantaneous velocity profiles, located downstream of the fans, will be presented and compared to the experimental data. The Ffowcs Williams & Hawkings formulation was used to model the acoustic spectra. The results from CFD simulation (acoustic rotating dipole) were used as input data for the acoustic modeling. Predicted and measured acoustic spectra will be presented. It was found that the forward fan has a uniform radial distribution of kinetic turbulence. Also, the three downstream velocity components have better radial distributions. This result was confirmed by the experimental and predicted aeroacoustic results.


Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 36
Author(s):  
Kelei Wang ◽  
Zhou Zhou

This paper describes the aerodynamic design and assessment of a blended-wing–body (BWB) configuration under the distributed electric propulsion (DEP) installation constraints. The aerodynamic design rationale and process is described, as well as how the DEP system is considered and simplified in the optimization design process. Both the BWB configuration and the DEP induced effects are numerically simulated and analyzed using the Reynolds Averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) flow solvers. To further demonstrate the feasibility and reliability of the design approach, the wind tunnel tests of a scaled model of the designed BWB configuration are carried out, and both the aerodynamic characteristics and the BWB surface flow are measured and analyzed. The results indicate the reliability and feasibility of the optimization design method introduced in this paper.


2021 ◽  
Vol 9 (2) ◽  
pp. 186
Author(s):  
Francesco Mauro ◽  
Elia Ghigliossi ◽  
Vittorio Bucci ◽  
Alberto Marinó

Nowadays, sustainable navigation is becoming a trending topic not only for merchant ships but also for pleasure vessels such as motoryachts. Therefore, the adoption of a hybrid-electric propulsion system and the installation of on-board storage devices could increase the greenness of a megayacht. This paper analyses the performance of three commercial propulsive solutions, using a dynamic operative profile and considering the influences of the smart berthing infrastructures. Results compare the yearly fuel consumptions of the analysed configurations for a reference megayacht.


Author(s):  
Nicolas Bellomo ◽  
Mirko Magarotto ◽  
Marco Manente ◽  
Fabio Trezzolani ◽  
Riccardo Mantellato ◽  
...  

AbstractREGULUS is an Iodine-based electric propulsion system. It has been designed and manufactured at the Italian company Technology for Propulsion and Innovation SpA (T4i). REGULUS integrates the Magnetically Enhanced Plasma Thruster (MEPT) and its subsystems, namely electronics, fluidic, and thermo-structural in a volume of 1.5 U. The mass envelope is 2.5 kg, including propellant. REGULUS targets CubeSat platforms larger than 6 U and CubeSat carriers. A thrust T = 0.60 mN and a specific impulse Isp = 600 s are achieved with an input power of P = 50 W; the nominal total impulse is Itot = 3000 Ns. REGULUS has been integrated on-board of the UniSat-7 satellite and its In-orbit Demonstration (IoD) is currently ongoing. The principal topics addressed in this work are: (i) design of REGULUS, (ii) comparison of the propulsive performance obtained operating the MEPT with different propellants, namely Xenon and Iodine, (iii) qualification and acceptance tests, (iv) plume analysis, (v) the IoD.


2013 ◽  
Vol 732-733 ◽  
pp. 1212-1215
Author(s):  
Gui Wen Kang ◽  
Yu Hu ◽  
Ya Dong Li ◽  
Wen Hui Jiang

The propulsion system of ultralight electric aircraft is one of the general aviation technology development directions. It has the advantages such as light pollution, low noise, high energy utilization ratio, simple structure, easy maintenance, high reliability, less heat radiation, little operation cost and so on. Combined with the certain type of ultralight aircraft design parameters, the layout of aircraft electric propulsion, the principles and steps of the parameter matching of electric propulsion system were presented. The method of parameter matching and performance verification of electric propulsion system was put forward. The feasibility of the system is verified from the point of dynamic property. The study of parameter matching of electric propulsion system could not only provide basis for the integrated optimization for electric power system, but also evaluate the performance of the system simulation as reference.


Sign in / Sign up

Export Citation Format

Share Document