scholarly journals Evolution of microstructure and mechanical properties of Ti-based metal-matrix composites during hot deformation

2020 ◽  
Vol 321 ◽  
pp. 12016
Author(s):  
S. Zherebtsov ◽  
M. Ozerov ◽  
M. Klimova ◽  
D. Klimenko ◽  
V. Sokolovsky ◽  
...  

Two Ti-based composites, viz. Ti/TiB and Ti-15Mo/TiB were produced by spark plasma sintering using a Ti-10wt.%TiB2 powder mixture at 1000°C or Ti-14.25(wt.)%Mo-5(wt.)%TiB2 powder mixture at 1400°C, respectively. Specimens of the metal-matrix composites (MMCs) were subjected to uniaxial compression in the temperature range from 500 to 1050°С to determine processing window. Processing maps for both MMCs were constructed and analyzed. Mechanical behavior and microstructure evolution of both MMCs during multiaxial forging (MAF) at 700°C and at a strain rate 10-3 s-1 were studied. The flow stress for the Ti-15Mo/TiB MMC during MAF was ∼2 times higher than that for the Ti/TiB composite. Microstructure evolution during MAF of Ti/TiB MMC was associated with continuous dynamic recrystallization of the titanium matrix and shortening of TiB whiskers by a factor of ~3. The Ti-15Mo/TiB composite microstructure after did not demonstrate the development of recrystallization.

2021 ◽  
Vol 865 ◽  
pp. 158875
Author(s):  
Neera Singh ◽  
Raghunandan Ummethala ◽  
Phani Shashanka Karamched ◽  
Rathinavelu Sokkalingam ◽  
Vasanth Gopal ◽  
...  

2019 ◽  
Vol 809 ◽  
pp. 79-86
Author(s):  
Georges Lemos ◽  
Márcio C. Fredel ◽  
Florian Pyczak ◽  
Ulrich Tetzlaff

Metal Matrix Composites (MMCs) are known for their remarkable properties, by combining materials from different classes. Ni-based MMCs are a promising group of heat-resistant materials, targeting aerospace applications. A discontinuously reinforced Inconel X-750/TiC 15 vol.% MMC was proposed for use in lighter, creep resistant turbine elements, with the aim to endure service temperatures up to 1073 K (800 °C). However, their microstructural stability at high temperatures for long periods of time remained to be further investigated. To address this need, specimens were produced by both conventional hot pressing and spark plasma sintering, using powders milled by low and high energy processes, followed by long isothermal aging. The treatments were conducted at 973 and 1073 K, for times between 50 and 1000 hours. The resulting samples were investigated with XRD and EDS techniques for phase analysis. In addition, measurements of hardness were made to monitor changes in mechanical behavior. It was found that, for each different manufacturing process, the amount, distribution and size of γ’ and other precipitates notably vary during the overaging process. Consequently, the amount of elements kept in solid solution also shifted with time. Furthermore, the study shows how distinct initial microstructures, resulting from diverse fabrication processes, differently impact the microstructural stability over long times of exposure to high temperatures.


1997 ◽  
Vol 234-236 ◽  
pp. 774-777 ◽  
Author(s):  
František Chmelik ◽  
Zuzana Trojanová ◽  
Jens Kiehn ◽  
Pavel Lukáč ◽  
Karl Ulrich Kainer

2019 ◽  
pp. 72-81
Author(s):  
Alexander Ya. Alexander Ya. Pak ◽  
Alyona A. Zakharova ◽  
Alexei V. Shklyar ◽  
Tatyana A. Pak

The work shows the results of the literature review of the methods for obtaining aluminiumsilicon carbide - metal matrix composites (Al/ SiC MMCs). This work also includes the collection, analysis, and systemization of the literature data where textual information is presented as a single lexical and semantic system and where numeral information is presented as a dimensional system. The analysis of the literature data was conducted by visual and cognitive modelling, so that methods of forming Al/SiC MMCs and operating parameters that provide the best properties of the material (maximum level of thermal conductivity and minimum level of thermal linear expansion) are determined. Compared to the literature data, the data are presented that were received in a series of tests for obtaining Al/SiC MMCs with spark plasma sintering from SiC, which was synthesized in atmospheric electric arc plasma. Within the framework of the given subject, the authors do not know any analogues of such an analysis and visualization system that allows us to analyse multivariate data, which is essential for solving issues of finding a correlation for the variety of initial parameters that characterize the process of obtaining Al/SiC MMCs and that characterize the cluster of properties for the obtained material. The comparison data are given for thermal conductivity levels of modern (aluminium) LED light devices and Al/SiC MMC samples.


2018 ◽  
Vol 770 ◽  
pp. 25-30 ◽  
Author(s):  
Harshpreet Singh ◽  
Muhammad Dilawer Hayat ◽  
Raj Das ◽  
Xin Gang Wang ◽  
Peng Cao

Metal matrix composites (MMCs) are the new generation materials that combine both the metallic properties (ductility and toughness) and ceramic characteristics (high strength and modulus), leading to higher strength in shear and compression, at higher service temperatures. Titanium matrix composites possess light weight, high strength and good corrosion resistance and are used as structural materials in automobiles and aerospace industries. In the present study, in situ Ti-TiB composites were fabricated by reinforcing (2, 5, 10 and 20 wt. %) TiB2 powder (mean size <10 microns) into titanium powder (mean particle size ~26.58 μm) and subsequently consolidated by vacuum sintering at 1300 °C for 3 h. X-ray diffraction, scanning electron microscopy (SEM) and density measurements were carried out to characterize the prepared composites. The results showed that all compositions led to high density composites, and the hardness of the composites increased with an increase in the amount of reinforcement. The mechanism of vacuum sintering is yet to be understood in the consolidation of composites and the detailed evolution of microstructure needs to be analysed.


Sign in / Sign up

Export Citation Format

Share Document