scholarly journals Assessment of CO2 flooding as enhanced oil recovery

2021 ◽  
Vol 340 ◽  
pp. 01021
Author(s):  
Akhat Makhambetov ◽  
Nursultan Azilkhanov

This article discusses evaluating CO2 injection as an enhanced oil recovery method. Carbon dioxide injection is a secondary and tertiary enhanced oil recovery method and is used in the final stage of development. Carbon dioxide mixes well with oil and can dissolve heavy components. Also, CO2 maintains reservoir pressure, which prevents the flow rate from dropping. In order for carbon dioxide and oil to mix, it must be brought to a critical state by increasing the temperature and pressure. After reaching the required conditions, both substances are fully compatible. The result of this combination is a medium that can easily seep through a porous medium. In fact, gas injection would be appropriate to use in a carbonate reservoir, and in our country and all over the world there are many oil fields that are located in carbonate rock. This work is based on data on a field located in the Krasnoyarsk region, which is part of the Angara fold zones. The field itself is represented mainly by carbonate reservoirs. Also, application of this method for Kazakhstan oilfield will be considered, using an example Zhetybay oilfield.

1979 ◽  
Vol 19 (04) ◽  
pp. 242-252 ◽  
Author(s):  
R.S. Metcalfe ◽  
Lyman Yarborough

Abstract Carbon dioxide flooding under miscible conditions is being developed as a major process for enhanced oil recovery. This paper presents results of research studies to increase our understanding of the multiple-contact miscible displacement mechanism for CO2 flooding. Carbon dioxide displacements of three synthetic oils of increasing complexity (increasing number of hydrocarbon components) are described. The paper concentrates on results of laboratory flow studies, but uses results of phase-equilibria and numerical studies to support the conclusions.Results from studies with synthetic oils show that at least two multiple-contact miscible mechanisms, vaporization and condensation, can be identified and that the phase-equilibria data can be used as a basis for describing the mechanism. The phase-equilibria change with varying reservoir conditions, and the flow studies show that the miscible mechanism depends on the phase-equilibria behavior. Qualitative predictions with mathematical models support our conclusions.Phase-equilibria data with naturally occurring oils suggest the two mechanisms (vaporization and condensation) are relevant to CO2 displacements at reservoir conditions and are a basis for specifying the controlling mechanisms. Introduction Miscible-displacement processes, which rely on multiple contacts of injected gas and reservoir oil to develop an in-situ solvent, generally have been recognized by the petroleum industry as an important enhanced oil-recovery method. More recently, CO2 flooding has advanced to the position (in the U.S.) of being the most economically attractive of the multiple-contact miscibility (MCM) processes. Several projects have been or are currently being conducted either to study or use CO2 as an enhanced oil-recovery method. It has been demonstrated convincingly by Holm and others that CO2 can recover oil from laboratory systems and therefore from the swept zone of petroleum reservoirs using miscible displacement. However, several contradictions seem to exist in published results.. These authors attempt to establish the mechanism(s) through which CO2 and oil form a miscible solvent in situ. (The solvent thus produced is capable of performing as though the two fluids were miscible when performing as though the two fluids were miscible when injected.) In addition, little experimental work has been published to provide support for the mechanisms of multiple-contact miscibility, as originally discussed by Hutchinson and Braun.One can reasonably assume that the miscible CO2 process will be related directly to phase equilibria process will be related directly to phase equilibria because it involves intimate contact of gases and liquids. However, no data have been published to indicate that the mechanism for miscibility development may differ for varying phase-equilibria conditions.This paper presents the results of both flow and phase-equilibria studies performed to determine the phase-equilibria studies performed to determine the mechanism(s) of CO2 multiple-contact miscibility. These flow studies used CO2 to displace three multicomponent hydrocarbon mixtures under first-contact miscible, multiple-contact miscible, and immiscible conditions. Results are presented to support the vaporization mechanism as described by Hutchinson and Braun, and also to show that more than one mechanism is possible with CO2 displacements. The reason for the latter is found in the results of phase-equilibria studies. SPEJ P. 242


2021 ◽  
Author(s):  
Yongsheng Tan ◽  
Qi Li ◽  
Liang Xu ◽  
Xiaoyan Zhang ◽  
Tao Yu

<p>The wettability, fingering effect and strong heterogeneity of carbonate reservoirs lead to low oil recovery. However, carbon dioxide (CO<sub>2</sub>) displacement is an effective method to improve oil recovery for carbonate reservoirs. Saturated CO<sub>2</sub> nanofluids combines the advantages of CO<sub>2</sub> and nanofluids, which can change the reservoir wettability and improve the sweep area to achieve the purpose of enhanced oil recovery (EOR), so it is a promising technique in petroleum industry. In this study, comparative experiments of CO<sub>2</sub> flooding and saturated CO<sub>2</sub> nanofluids flooding were carried out in carbonate reservoir cores. The nuclear magnetic resonance (NMR) instrument was used to clarify oil distribution during core flooding processes. For the CO<sub>2</sub> displacement experiment, the results show that viscous fingering and channeling are obvious during CO<sub>2</sub> flooding, the oil is mainly produced from the big pores, and the residual oil is trapped in the small pores. For the saturated CO<sub>2</sub> nanofluids displacement experiment, the results show that saturated CO<sub>2</sub> nanofluids inhibit CO<sub>2</sub> channeling and fingering, the oil is produced from the big pores and small pores, the residual oil is still trapped in the small pores, but the NMR signal intensity of the residual oil is significantly reduced. The final oil recovery of saturated CO<sub>2</sub> nanofluids displacement is higher than that of CO<sub>2</sub> displacement. This study provides a significant reference for EOR in carbonate reservoirs. Meanwhile, it promotes the application of nanofluids in energy exploitation and CO<sub>2</sub> utilization.</p>


Author(s):  
Stanislav A. Kalinin ◽  
◽  
Oleg A. Morozyuk ◽  

It is of current concern for the Permian-Carboniferous reservior of the Usinskoye field to develop low-permeable matrix blocks of carboniferous reservoirs, which contain major reserves of high-viscosity oil. To increase effectiveness of the currently used thermal oil recovery methods, the authors suggest using carbon dioxide as a reservoir stimulation agent. Due to a high mobility in its supercritical condition, СО2 is, theoretically, able to penetrate matrix blocks, dissolve in oil and, additionally, decrease its viscosity. Thus, СО2 applications together with a heat carrier could increase effectiveness of the high-viscosity oil recoveries and improve production parameters of the Permian-Carboniferous reservior of the Usinskoye field. During carbon dioxide injections, including combinations with various agents, some additional oil production is possible due to certain factors. Determination of the influencing factors and detection of the most critical ones is possible in laboratory tests. So, laboratory studies entail the key stage in justification of the technology effectiveness. The paper deals with describing the laboratory facilities and methodologies based on reviews of the best world practice and previous laboratory researches. These aim at evaluating effectiveness of thermal, gas and combined oil recovery enhancement methods. In particular, the authors explore experimental facilities and propose methodology to perform integrated researches of the combined heat carrier and carbon dioxide injection technology to justify the effective super-viscous oil recovery method.


2011 ◽  
Vol 4 ◽  
pp. 2162-2169 ◽  
Author(s):  
Michael Godec ◽  
Vello Kuuskraa ◽  
Tyler Van Leeuwen ◽  
L. Stephen Melzer ◽  
Neil Wildgust

Sign in / Sign up

Export Citation Format

Share Document