scholarly journals A study of the electrostatic charge of the coarse water droplets

2021 ◽  
Vol 345 ◽  
pp. 00003
Author(s):  
Ondřej Bartoš ◽  
Václav Peter

The aim of this paper is introduce the results of a measurement of the electrostatic charge of water droplets during wet steam expansion. The analysis of the charge origin was done. The achieved result shows that there is not a significant charging mechanism for the fine droplets. The dependence between the specific electrical current and the amount of liquid phase collected by the probe was found. Some models were studied to determine the origin of the electrical current. Finally a model was proposed, where the el. current is generated by the disruption of thin liquid film on the surface of the probe. The charging model was later applied for the measurement of the liquid film disruption in the new wind tunnel designed for the simulation of the flow field in the steam turbines. The measurement was performed with the air as a flowing medium and two modal droplets size distribution was found.

2001 ◽  
Vol 10 (2) ◽  
pp. 123-126 ◽  
Author(s):  
Xiaoshu Cai ◽  
Lili Wang ◽  
Yongzhi Pan ◽  
Xin Ouyan ◽  
Jianqi Shen

Author(s):  
A Kleitz ◽  
J M Dorey

This paper is devoted to the measuring methods and instrumentation used in the wet-steam area for both aerodynamics measurements (pressure, temperature and velocity) taking into account the interaction between the vapour and the liquid phase, and the characterization of the liquid phase itself (dispersed phase and liquid film). The development of suitable instrumentation is an important part in understanding the formation and evolution of the liquid phase but is now more and more oriented towards practical industrial concerns, such as the direct determination of turbine performance by measuring exhaust wetness or chemical measurements relating to erosion in the transition zone inside the turbine. Emphasis has been given to techniques suitable for use in actual turbines.


Author(s):  
Veera P. Rajendran ◽  
Alan D. Maddaus ◽  
Richard E. Warren ◽  
Richard N. Matthews ◽  
Daniel L. Gysling ◽  
...  

Wet steam is a common occurrence at the exhaust of the LP turbines in fossil-fired steam plants. In nuclear turbines, wet steam will be found right from the high-pressure sections. The presence of moisture in steam reduces the aerodynamic efficiency of the turbine sections, thus reducing the overall efficiency of the turbine. Additionally, water droplets also cause erosion and corrosion of buckets and other components. LP turbines account for a significant portion of the total cost of the turbines (due to the enormous sizes required by the expanding steam) and produce significant portion of the power output. Measuring and controlling wetness will help improve both the performance and reliability of turbines. A novel way of measuring the composition of wet steam using a speed of sound based technique is being developed. The technique, based on technology developed for measuring two-phase flow compositions in down-hole (oil-field) applications, relies on measuring acoustic pressures propagating in a one-dimensional wave-guide (pipe or tube) using an array of axially located pressure transducers. The technique is non-intrusive to the flow field and relies on passive listening of the noise generated by the flow itself (and, hence differs from the conventional ultrasound based techniques). The current study is an ongoing effort and the paper will focus on the feasibility of this technique for wet steam application. The eventual aim is to be able to measure steam wetness in the range of 0–10% with an accuracy of ± 0.2%. Initially, the ability of the technique to accurately measure the wetness in air-water mixture was established using an air and water mist facility. Next, high subsonic flow conditions were evaluated in single phase (air only) flow using a wind tunnel facility. Excellent agreement between speed of sound calculated for air, based on conventional pressure and temperature measurements in a wind tunnel, and that measured directly by the probe was obtained. The wind tunnel tests showed that the SOS measured by the probe and conventional instrumentation agreed within ± 1.5%. This establishes that the technique is capable of accurately measuring the speed of sound, which is the primary variable to calculate the flow composition. The technique can also be used to measure volume. Although the wind tunnel tests were not specifically designed to assess the accuracy of the flow rate measurement, comparisons were made between the flow velocities given by the probe and reference measurements. The additional motivation was to assess the ability of the probe to monitor volume flow/mass flow at high Mach numbers where only shorter straight sections are available. The flow velocities measured by the probe agreed with those calculated using the wind tunnel instrumentation (wall-static taps) within the estimated uncertainty levels introduced by the flow blockage and profile distortions. Additional tests are planned to assess flow rate accuracy. Effort is continuing to study steam flows representative of exhaust of low pressure steam turbines in steam plants.


Author(s):  
M. R. Mahpeykar ◽  
E. Amirirad ◽  
E. Lakzian

Progress in the development of the steam turbines brings about a renewal of interest in wetness associated problems. In turbine steam expansion, the vapour first supercools and then condenses spontaneously to become a two phase mixture. The flow initially is single phase but after Wilson point water droplets are developed and there is a non equilibrium two phase flow. The formation and behavior of the liquid create problems that lower the performance of the turbine wet stage and the mechanisms underlying this are insufficiently understood. This growing droplets release their latent heat to the flow and this heat addition to the supersonic flow cause a pressure rise called condensation shock. Because of irreversible heat transfer in this region the entropy will increase tremendously. Removal of condensates from wet steam flow in the last stage of steam turbines significantly promotes stage efficiency and prevents erosion of rotors. The following study investigates the spraying water droplets at inlet and at throat of mini Laval nozzle and their effects on nucleation rate and condensation shock. According to the results, the nucleation rate is considerably suppressed and therefore the condensation shock nearly disappeared. In other words the injecting droplets would decrease the thermodynamic losses or improve the turbine efficiency.


Author(s):  
Ryo Morita ◽  
Yuta Uchiyama ◽  
Fumio Inada ◽  
Shiro Takahashi

Flow-induced acoustic resonances in piping with closed side branches or T-junctions are one of the causes of severe structural vibrations, which sometimes cause fatigue damage to piping and components in a power plant and many engineering applications. In this paper, on the basis of the results of steam flow experiments and calculations, the effects of the liquid phase on the flow-induced acoustic resonance at closed side branches in the steam flow piping of BWRs are described, and some suggestions for the steam piping design of BWRs are also given. The liquid phase in a steam flow forms droplets or liquid film, which may affect the amplitude, frequency and critical Strouhal number of the resonance. From the results of wet steam experiments and CFD calculations, we have found that in some cases the wetness of the steam flow may decrease the resonant amplitude and change the frequency owing to the interaction of the vortex generation or damping by the existence of the liquid film and droplets. Therefore, for the wet steam piping design of BWR, some suggestions for taking these effects into consideration, under actual BWR steam conditions are described.


Author(s):  
Michal Kolovratnik ◽  
Gukchol Jun

Abstract The Czech Technical University in Prague (CTU) has been conducting both theoretical and experimental research on wet steam for over 50 years. Part of this research has focused on the development of an instrument for measuring the structure of the liquid phase of wet steam — an optical extinction probe. The measurements of the wet steam structure using our optical extinction probe take place in operative steam turbines. Due to the non-negligible interaction of the probe with the flow field in its vicinity, the wet steam parameters within the probe measuring space change. This probe-flow field interaction (PFFI) negatively affects the accuracy of the measurement of the liquid phase structure. This paper presents partial results of our research into the interaction between the optical probe and the surrounding flow field. Particularly, it is the result of CFD simulations of wet steam (WS) flow in the low-pressure section of a 1000 MW nuclear plant steam turbine, in which the probe has been used repeatedly. In the simulations we consider, non-equilibrium condensation allows for the observation of the formation and development of the liquid phase within the turbine. The influence of PFFI on the liquid phase structure is evaluated by a coefficient called the Probe Influence Factor (PIF). In this work, the PIF values are presented for 3 varying traversing positions of the probe along the L-1 stage turbine blade. The use of the PIF to analyse the experimental measurement results is also discussed. The second part of the paper deals with the possibility of modifying the shape of the probe measuring head. Based on detailed analysis of the CFD simulations of PFFI, modifying the shape of the probe is proposed to reduce this interaction. The benefit of this change is evaluated using CFD simulations. Comparisons between the PIF coefficients of the original and modified optical probes indicate that modifying the shape may reduce the PFFI influence on experimental measurements.


2019 ◽  
Vol 213 ◽  
pp. 02058
Author(s):  
Lucie Měšťanová ◽  
Ondřej Bartoš

The paper introduces the experimental results of the droplets formation for three different aqueous solutions. The new wind tunnel was built to study water droplets atomization from liquid films at high speed flow similar to that found in steam turbines. Liquid atomization is a widely studied problem for sprays and generally in the field of aerosol research. A similar phenomenon occurs in steam turbines but mainly with undesirable effects, the formed droplets from the film (coarse droplets) have a negative effect on the reliability and efficiency of the turbines due to the erosion and corrosion by the droplets impact on the leading edges of the blades. The new wind tunnel is equipped with classical pressure and temperature measurement systems for the determination of the initial condition in the settling chamber and measurement of the static pressure along the nozzle with a known profile. The photogrammetric method and light scattering are used to measure the diameter distribution of the droplets. The liquid film is made with an aqueous solution supplied on the symmetrical aerofoil NACA 0008. Different aqueous solutions were studied for different liquid surface tension effects.


Sign in / Sign up

Export Citation Format

Share Document