scholarly journals Environmental assessment of PSS, feedback on 2 years of experimentation

2017 ◽  
Vol 105 (5-6) ◽  
pp. 504 ◽  
Author(s):  
Romain Allais ◽  
Julie Gobert

This communication details the sustainability assessment of the partial transition of business model from selling products to product renting for small household equipment (SHE). Perceived by the French SHE manufacturer as a strategic opportunity to meet customers’ expectations and environmental regulation, 2-years experimentation was performed on a specific territory with the support of a network of new competencies (B-to-B-to-C market). Researchers were mandated for the sustainability assessment of such a transition but this communication focuses on the environmental performance of the experimentation. The results of the comparative LCA are presented and the main environmental impacts linked to this business model transition are specified and discussed. Then, different eco-design scenarios are explored and recommendations for this specific case are proposed.

2015 ◽  
Vol 73 (6) ◽  
pp. 1387-1394 ◽  
Author(s):  
Christian Baresel ◽  
Lena Dalgren ◽  
Mats Almemark ◽  
Aleksandra Lazic

Wastewater reclamation will be a significant part of future water management and the environmental assessment of various treatment systems to reuse wastewater has become an important research field. The secondary treatment process and sludge handling on-site are, especially, electricity demanding processes due to aeration, pumping, mixing, dewatering, etc. used for operation and are being identified as the main contributor for many environmental impacts. This study discusses how the environmental performance of reuse treatment systems may be influenced by surrounding conditions. This article illustrates and discusses the importance of factors commonly treated as externalities and as such not being included in optimization strategies of reuse systems, but that are necessary to environmentally assess wastewater reclamation systems. This is illustrated by two up-stream and downstream processes; electricity supply and the use of sludge as fertilizer commonly practiced in regions considered for wastewater reclamation. The study shows that external conditions can have a larger impact on the overall environmental performance of reuse treatment systems than internal optimizations could compensate for. These results imply that a more holistic environmental assessment of reuse schemes could provide less environmental impacts as externalities could be included in measures to reduce the overall impacts.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5998
Author(s):  
Toshiyuki Sueyoshi ◽  
Youngbok Ryu

This study measures the unified (i.e., operational and environmental) performance of semiconductor firms in the world by using Data Envelopment Analysis (DEA) environmental assessment. With its promising and expanding electronic applications, many industrial nations have supported the semiconductor industry under their strategic plans, and numerous firms are involved in the global value chain. Drawing on the proposed DEA-based environmental (sustainability) assessment, which uses two disposability criteria (i.e., natural and managerial), this study first compute the unified efficiency scores of semiconductor firms. Then, this study explores how corporate age, business model, and location influence the efficiency scores by employing Tobit regressions and t-tests. The empirical implications obtained from this research indicate that overall, the semiconductor firms look for their economic achievements but are not paying enough attention to environmental sustainability. Corporate age and business model are statistically related with their operational performance measures whereas corporate location is related with their environmental ones.


Author(s):  
Sheetal Jaisingh Kamble ◽  
Anju Singh ◽  
Manoj Govind Kharat

Purpose Wastewater treatment plants (WWTPs) have long-time environmental impacts. The purpose of this paper is to assess the environmental footprint of two advanced wastewater treatment (WWT) technologies in a life cycle and sustainability perspective and identify the improvement alternatives. Design/methodology/approach In this study life cycle-based environmental assessment of two advanced WWT technologies (moving bed biofilm reactor (MBBR) and sequencing batch reactor (SBR)) has been carried out to compare different technological options. Life cycle impacts were computed using GaBi software employing the CML 2 (2010) methodology. Primary data were collected and analysed through surveys and on-site visits to WWTPs. The present study attempts to achieve significantly transparent results using life cycle assessment (LCA) in limited availability of data. Findings The results of both direct measurements in the studied wastewater systems and the LCA support the fact that advanced treatment has the best environmental performance. The results show that the operation phase contributes to nearly 99 per cent for the impacts of the plant. The study identified emissions associated with electricity production required to operate the WWTPs, chemical usage, emissions to water from treated effluent and heavy metal emissions from waste sludge applied to land are the major contributors for overall environmental impacts. SBR is found to be the best option for WWT as compared to MBBR in the urban context. In order to improve the overall environmental performance, the wastewater recovery, that is, reusable water should be improved. Further, sludge utilisation for energy recovery should be considered. The results of the study show that the avoided impacts of energy recovery can be even greater than direct impacts of greenhouse gas emissions from the wastewater system. Therefore, measures which combine reusing wastewater with energy generation should be preferred. The study highlights the major shortcoming, i.e., the lack of national life cycle inventories and databases in India limiting the wide application of LCA in the context of environmental decision making. Research limitations/implications The results of this study express only the environmental impacts of the operation phase of WWT system and sludge management options. Therefore, it is recommended that further LCAs studies should be carried out to investigate construction and demolition phase and also there is need to reconsider the toxicological- and pathogen-related impact categories. The results obtained through this type of LCA studies can be used in the decision-making framework for selection of appropriate WWT technology by considering LCA results as one of the attributes. Practical implications The results of LCA modelling show that though the environmental impacts associated with advanced technologies are high, these technologies produce the good reusable quality of effluent. In areas where water is scarce, governments should promote reusing wastewater by providing additional treatment under safe conditions as much as possible with advanced WWT. The LCA model for WWT and management planning can be used for the environmental assessment of WWT technologies. Originality/value The current work provides a site-specific data on sustainable WWT and management. The study contributes to the development of the regional reference input data for LCA (inventory development) in the domain of wastewater management.


2021 ◽  
Vol 14 (1) ◽  
pp. 337
Author(s):  
Jordi Puig ◽  
Ana Villarroya ◽  
María Casas

Global environmental quality decline builds up through innumerable decisions at many scales that cause damage to ecological and social values. Environmental assessment (EA) is a relevant decision-making framework in this sense. Besides its technical role, EA has a cultural side we should consider in the pursuit of sustainable societies. Despite its limited reach, EA exemplifies and confronts some cultural implicit stances that may unwittingly favor the overall decline of environmental quality, and limit the advancement and efficiency of EA. Many of these cultural traits are well known and easier to point to than to reverse, namely: (1) too tolerant-to-damage standards of environmental protection and equality; (2) inadequate criteria to assess environmental performance; (3) tolerance of the net loss of environmental quality; (4) confrontation between ecological and social values in decision-making; and (5) neglect of full, in-kind compensation of environmental impacts. EA may have not only a technical or procedural, but also a cultural role to play in confronting these sources of unsustainability. A lack of attention to the cultural causes of environmental impacts neglects the deepest roots of environmental damage. This commentary addresses the topics above and brings attention to their disregard for environmental values, which should guide EA towards increased levels of sustainability.


2020 ◽  
Vol 12 (6) ◽  
pp. 2208 ◽  
Author(s):  
Jamie E. Filer ◽  
Justin D. Delorit ◽  
Andrew J. Hoisington ◽  
Steven J. Schuldt

Remote communities such as rural villages, post-disaster housing camps, and military forward operating bases are often located in remote and hostile areas with limited or no access to established infrastructure grids. Operating these communities with conventional assets requires constant resupply, which yields a significant logistical burden, creates negative environmental impacts, and increases costs. For example, a 2000-member isolated village in northern Canada relying on diesel generators required 8.6 million USD of fuel per year and emitted 8500 tons of carbon dioxide. Remote community planners can mitigate these negative impacts by selecting sustainable technologies that minimize resource consumption and emissions. However, the alternatives often come at a higher procurement cost and mobilization requirement. To assist planners with this challenging task, this paper presents the development of a novel infrastructure sustainability assessment model capable of generating optimal tradeoffs between minimizing environmental impacts and minimizing life-cycle costs over the community’s anticipated lifespan. Model performance was evaluated using a case study of a hypothetical 500-person remote military base with 864 feasible infrastructure portfolios and 48 procedural portfolios. The case study results demonstrated the model’s novel capability to assist planners in identifying optimal combinations of infrastructure alternatives that minimize negative sustainability impacts, leading to remote communities that are more self-sufficient with reduced emissions and costs.


2021 ◽  
Vol 13 (7) ◽  
pp. 3856
Author(s):  
Rebeka Kovačič Lukman ◽  
Vasja Omahne ◽  
Damjan Krajnc

When considering the sustainability of production processes, research studies usually emphasise environmental impacts and do not adequately address economic and social impacts. Toy production is no exception when it comes to assessing sustainability. Previous research on toys has focused solely on assessing environmental aspects and neglected social and economic aspects. This paper presents a sustainability assessment of a toy using environmental life cycle assessment, life cycle costing, and social life cycle assessment. We conducted an inventory analysis and sustainability impact assessment of the toy to identify the hotspots of the system. The main environmental impacts are eutrophication, followed by terrestrial eco-toxicity, acidification, and global warming. The life cycle costing approach examined the economic aspect of the proposed design options for toys, while the social assessment of the alternative designs revealed social impacts along the product life cycle. In addition, different options based on the principles of the circular economy were analysed and proposed in terms of substitution of materials and shortening of transport distances for the toy studied.


2018 ◽  
Vol 10 (11) ◽  
pp. 3868 ◽  
Author(s):  
Kailun Feng ◽  
Weizhuo Lu ◽  
Thomas Olofsson ◽  
Shiwei Chen ◽  
Hui Yan ◽  
...  

Construction accounts for a considerable number of environmental impacts, especially in countries with rapid urbanization. A predictive environmental assessment method enables a comparison of alternatives in construction operations to mitigate these environmental impacts. Process-based life cycle assessment (pLCA), which is the most widely applied environmental assessment method, requires lots of detailed process information to evaluate. However, a construction project usually operates in uncertain and dynamic project environments, and capturing such process information represents a critical challenge for pLCA. Discrete event simulation (DES) provides an opportunity to include uncertainty and capture the dynamic environments of construction operations. This study proposes a predictive assessment method that integrates DES and pLCA (DES-pLCA) to evaluate the environmental impact of on-site construction operations and supply chains. The DES feeds pLCA with process information that considers the uncertain and dynamic environments of construction, while pLCA guides the comprehensive procedure of environmental assessment. A DES-pLCA prototype was developed and implemented in a case study of an 18-storey building in Northeast China. The results showed that the biggest impact variations on the global warming potential (GWP), acidification potential (AP), eutrophication (EP), photochemical ozone creation potential (POCP), abiotic depletion potential (ADP), and human toxicity potential (HTP) were 5.1%, 4.1%, 4.1%, 4.7%, 0.3%, and 5.9%, respectively, due to uncertain and dynamic factors. Based on the proposed method, an average impact reduction can be achieved for these six indictors of 2.5%, 21.7%, 8.2%, 4.8%, 32.5%, and 0.9%, respectively. The method also revealed that the material wastage rate of formwork installation was the most crucial managing factor that influences global warming performance. The method can support contractors in the development and management of environmentally friendly construction operations that consider the effects of uncertainty and dynamics.


2019 ◽  
Vol 281 ◽  
pp. 03005 ◽  
Author(s):  
Nicolas Youssef ◽  
Andry Zaid Rabenantoandro ◽  
Zakaria Dakhli ◽  
Fadi Hage Chehade ◽  
Zoubeir Lafhaj

This article presents the environmental assessment of geopolymer bricks produced from clay and waste bricks. The life cycle approach is the method used in this research to qualify, identify and compare the environmental impacts of geopolymer bricks and fired bricks. The results reveal that the manufacturing process of geopolymer bricks implies for the same compressive strength of fired bricks, a reduction of CO2 emissions by up to 55% for clay-based geopolymer bricks. This research checks the environmental interests of the application of geopolymerization technology in the production of bricks.


2020 ◽  
Vol 12 (21) ◽  
pp. 9193
Author(s):  
Insub Choi ◽  
JunHee Kim ◽  
DongWon Kim

In populated downtown areas, a floor system with secured environmental performance is needed to reduce greenhouse gases (GHGs) and global warming problems related to buildings. This study aims to assess environmental impacts on a novel double-beam floor system subjected to high gravity loads. Life cycle assessment (LCA) was conducted to investigate the environmental impacts on the reduction in construction materials by calculating global warming potential (GWP) in the structural design phase. For different structural systems, the environmental performance was compared based on the GWP, and the contributions of structural elements to the GWP in each structural system were analyzed. The rotational constraints induced by the beam-end concrete panel can significantly reduce the GWP of the double-beam floor system by up to 13.8% compared to the conventional beam-girder system. Thus, the double-beam floor system reinforced with the concrete panel can be a candidate for eco-friendly structural systems in underground structures requiring high gravity loads. This result provides valuable findings that the structural effect on the rotational constraint of the concrete panel was quantitatively evaluated by converting it into an environmental impact.


Sign in / Sign up

Export Citation Format

Share Document