scholarly journals Experimental and numerical investigation of the overload effect on fatigue behaviour of spot-welded steel sheets

2018 ◽  
Vol 106 (3) ◽  
pp. 309 ◽  
Author(s):  
Fabienne Pennec ◽  
Bianzeubé Tikri ◽  
Sébastien Bergamo ◽  
Michel Duchet ◽  
Bastien Weber ◽  
...  

Spot-weld joints are commonly used to fasten together metal sheets in automotive industry. The car frame used in Renault vehicles is a representative example of the usefulness of this method. Most of the spot-welds experience fatigue damaging occurrence due to rough roads or driving conditions which apply periodical overloads to the vehicle. Understanding their fatigue behaviour is crucial from the viewpoint of failure prevention in design. In this study, a series of experiments was conducted to study the fatigue failure of spot-welded tensile-shear specimens made of a deep-drawing steel (XES) and High strength low alloy steels (HE360D and XE360D). Two different types of fatigue tests were performed, the first one with a constant-amplitude sinusoidal loading (loading ratio equal to 0.1) and the second one with one incidental overload cycle introduced per 100 cycles. The experimental results show a favourable effect of overloads for HSLA steel specimens, whereas the effect is the opposite for XES steel specimens. A finite element analysis was carried out using the open-source Salome-Meca platform to determine the stress states within the specimens around the weld spot and explains both failure modes observed on the specimens at high and low loads.

1986 ◽  
Vol 2 (03) ◽  
pp. 145-162 ◽  
Author(s):  
T. W. Montemarano ◽  
B. P. Sack ◽  
J. P. Gudas ◽  
M. G. Vassilaros ◽  
H. H. Vanderveldt

The Naval Sea Systems Command has recently certified a lower-cost alternative steel to the HY-80 steel presently used in construction of naval surface ships. This alternative steel is based on the commercial development of high strength low alloy (HSLA) steels originally directed to the offshore oil exploration platform and gas line transmission industries. The certification is a result of an ongoing research and development program begun in 1980. This paper addresses several aspects of the HSLA steel development effort, including a discussion of the properties and metallurgy of this steel, and the cost savings which are achievable. Finally, the status of the current and planned Navy HSLA usage and the R&D program is described.


Author(s):  
Tatsumi Takehana ◽  
Takeru Sano ◽  
Susumu Terada ◽  
Hideo Kobayashi

2-1/4Cr-1Mo-V and 3Cr-1Mo-V steels have been used extensively as materials for elevated temperature and high-pressure hydro-processing reactors. These steels have both of high strength at elevated temperature and high resistance against elevated temperature hydrogen attack due to the addition of vanadium. The operating temperature of these reactors is between 800 and 900deg.F. The fatigue evaluations of these reactors per ASME Sec. VIII Div.2 and Div.3 can’t be performed in spite of demand for fatigue analysis because the temperature limit of design fatigue curve in ASME Sec. VIII Div.2 and Div.3 for carbon and low alloy steels is 700deg.F. Results of load and strain controlled fatigue tests conducted over the temperature range from room temperature to 932deg.F (500deg.C) are reported for 2-1/4Cr-1Mo-V and 3Cr-1Mo-V steels. These data were compared with data for 2-1/4Cr-1Mo steels available from the literatures. The fatigue strength for a 2-1/4Cr-1Mo-V steel in high cycle region is higher than that for 2-1/4Cr-1Mo steels and in low cycle region is lower. The fatigue strength for a 3Cr-1Mo-V steel is almost same as that for 2-1/4Cr-1Mo-V steels. Therefore an elevated temperature design fatigue curve for 2-1/4Cr-1Mo-V and 3Cr-1Mo-V steels is newly proposed. It is found from the case study that the different fatigue life can be predicted by using different mean stress correction procedure.


2020 ◽  
Vol 1007 ◽  
pp. 41-46
Author(s):  
Ning Li ◽  
Wilasinee Kingkam ◽  
Zi Ming Bao ◽  
Ren Heng Han ◽  
Yao Huang ◽  
...  

In this study, the two types of high-strength low-alloy steels were melted and cast in a vacuum induction furnace. Phase transition temperature of HSLA steel was calculated by JMatPro software. The calculation results show that the two different types of HSLA steels which have equal phase proportions of ferrite and austenite at a temperature of approximately 820 and 800 °C in HSLA-I and HSLA-II, respectively. In addition, the effect of chemical composition on the microstructure and mechanical properties of steels were studied. The results indicate that the ultimate tensile stress value of HSLA-II samples was greater than the HSLA-I samples by about 35%, and the yield stress and breaking strength value of HSLA-II were higher than HSLA-I as well.


2019 ◽  
Vol 24 (3) ◽  
Author(s):  
Mauricio Rodrigues Policena ◽  
Arielton Trindade ◽  
William Haubert Fripp ◽  
Charles Leonardo Israel ◽  
Gregori Fronza ◽  
...  

ABSTRACT Flow drilling process produces bushes for removable joints that can be threaded by forming tapping process, reducing stages in production of components of automobile industry and in construction sheds. High strength and low alloy steels (HSLA) are employed on several applications in the processing industry. Benefits provided by these materials make them an efficient solution, since their high cold resistance allows reducing weight on structures, as well as maintaining the required mechanical properties. The present study evaluated the conventional and friction drilling processes in HSLA steel sheets with a thickness of 4.25 mm. Specimens were subjected to cyclic loadings, with no rework after holemaking, so the resultant characteristics of each process were maintained. Fractured surfaces were analyzed with a scanning electron microscope (SEM) to identify the fracture mechanism in different drilling processes. Fractographies obtained on both processes indicated that the failure mechanism occurred due to ductile fracture resulting from the nucleation, growth and coalescence of micro cavities.


2021 ◽  
Author(s):  
Dennis Charles Parkes

With increasing use of dual phase steels in the automotive industry, it is important to have an understanding of how they behave when they are welded to conventional high strength low alloy steels (HSLA). Fiber laser welded dissimilar joints between DP980 and HSLA steels were evaluated in tension at low temperature (-40°C), room temperature (25°C), elevated temperature (180°C), and in fatigue under different welding conditions. Triple dissimilar welds were tested in various combinations and with different types of protective zinc coatings to determine the effect that coatings play on the tensile and fatigue behaviour. Lastly, an analysis was done on how the change in DP980 chemistry could affect the final mechanical properties of their welded joints.


Author(s):  
Claudiu Babis ◽  
Gheorghe Solomon ◽  
Gabriel Iacobescu ◽  
Oana Roxana Chivu ◽  
Anca Alexandra Purcarea

There are many welded structures in the world such as bridges and viaducts that are subject to fatigue. These structures, generally made of non-alloy or low-alloy steels, have been put into operation some of them with many years ago and have accumulated a large number of variable load cycles over the time. For this reason the occurrence of fatigue phenomenon is inevitable and consists in the occurrence of failures at stresses applied to the structure, below the yield limit of the material. These stresses under the static loads would not cause the failures to appear..This paper will investigate whether two reconditioning techniques “weld toe grinding” and “WIG remelting weld toe”, influences favorably the behavior of welded structures made from HSLA steel, in static and variable loads and therefore if the application of these techniques is justified in both cases. In the paper will be presented the chemical composition and mechanical properties of the base and filler materials, micro and macrostructures, graphics with the variation of microhardness, static and fatigue tensile tests will be performed, and it will be rised durability curve in case of fatigue tests.


2021 ◽  
Author(s):  
Dennis Charles Parkes

With increasing use of dual phase steels in the automotive industry, it is important to have an understanding of how they behave when they are welded to conventional high strength low alloy steels (HSLA). Fiber laser welded dissimilar joints between DP980 and HSLA steels were evaluated in tension at low temperature (-40°C), room temperature (25°C), elevated temperature (180°C), and in fatigue under different welding conditions. Triple dissimilar welds were tested in various combinations and with different types of protective zinc coatings to determine the effect that coatings play on the tensile and fatigue behaviour. Lastly, an analysis was done on how the change in DP980 chemistry could affect the final mechanical properties of their welded joints.


2007 ◽  
Vol 561-565 ◽  
pp. 2083-2086 ◽  
Author(s):  
Ilana B. Timokhina ◽  
Peter D. Hodgson ◽  
Simon P. Ringer ◽  
Rong Kun Zheng ◽  
Elena V. Pereloma

The contribution of nano-scale particles observed using Atom Probe Tomography in an increase of yield strength of conventional and advanced HSLA steels was studied. The advanced HSLA steel showed higher yield strength than conventional HSLA steel. There were two types of carbides, which primarily contribute to an increase in yield strength of conventional HSLA steel: (i) coarse TiC with average size of 25±5nm and (ii) fine TiC with average radius of 3±1.2nm. The presence of two types of carbides was found in the microstructure of advanced HSLA steel: (i) nano-scale Ti0.98Mo0.02C0.6 carbides with average radius of 2.2±0.5nm, and (ii) C19Cr7Mo24 particles with an average radius of 1.5±0.3nm. The contribution of precipitation hardening in the yield strength of advanced HSLA steel due to the nano-scale particles was 174MPa, while this value in the conventional HSLA steel was 128MPa.


Sign in / Sign up

Export Citation Format

Share Document