scholarly journals Effect of temperature dependent viscosity on the thermal instability of two-dimensional stagnation point flow

2015 ◽  
Vol 16 (5) ◽  
pp. 506 ◽  
Author(s):  
Fatsah Mendil ◽  
Faïçal Nait Bouda ◽  
Djamel Sadaoui
2014 ◽  
Vol 49 (3) ◽  
pp. 249-263 ◽  
Author(s):  
Lukács Benedek Kuslits ◽  
Márton Pál Farkas ◽  
Attila Galsa

Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 200
Author(s):  
Muhammad Qasim ◽  
Zafar Ali ◽  
Umer Farooq ◽  
Dianchen Lu

This study comprehensively explores the generalized form of two-dimensional peristaltic motions of incompressible fluid through temperature-dependent physical properties in a non-symmetric channel. Generation of entropy in the system, carrying Joule heat and Lorentz force is also examined. Viscous dissipation is not ignored, for viewing in-depth, effects of heat transmission and entropy production. The modeling of equations is tracked first in fixed and then in wave frame. The resultant set of coupled non-linear equations are solved numerically by utilizing NDSolve in Mathematica. Comparison between NDSolve and the numerical results obtained through bvp4c MATLAB is made for the validation of our numerical codes. The attained results are found to be in excellent agreement. The impact of control parameters on the velocity profiles, pressure gradient, heat transfer, streamlines and entropy production are studied and discussed graphically. It is witnessed that entropy production and heat transfer are increased significantly subject to the enhancement of Hartman number, Brinkman number and electrical conductivity parameter. Hence, choosing appropriate values of physical parameters, performance and efficiency of flow structure and system can be improved. The results reported provide a virtuous insight into bio energy systems providing a useful standard for experimental and extra progressive computational multiphysics simulations.


Sign in / Sign up

Export Citation Format

Share Document