scholarly journals A joint pricing and network design model for a closed-loop supply chain under disruption (Glass Industry)

Author(s):  
Matineh ziari ◽  
Mohsen Sheikh Sajadieh

Closed-loop supply chains have attracted more attention by researchers and practitioners due to strong government regulations, environmental issues, social responsibilities and natural resource constraints over past few years. This paper presents a mixed-integer linear programming model to design a closed-loop supply chain network and optimizing pricing policies under random disruption. Reusing the returned products is applied as a resilience strategy to cope with the waste of energy and improving supply efficiency. Moreover, it is necessary to find the optimal prices for both final and returned products. Therefore, the model is formulated based on demand function and it maximizes total supply chain’s profit. Finally, its application is explored through using the real data of an industrial company in glass industry.

Author(s):  
Aijun Liu ◽  
Yan Zhang ◽  
Senhao Luo ◽  
Jie Miao

In the process of globalization, customer demand is usually difficult to predict, and product recycling is generally difficult to achieve accurately. It is also urgent to deal with increased inventory while avoiding shortages, with the purpose of reducing supply chain risks. This study analyzes the integrated supply chain decision-making problem in the random product demand and return environment. It proposes a multi-objective optimization model, which is an effective tool to solve the design and planning problems of the global closed-loop supply chain. It consists of a multi-period, single-product and multi-objective mixed integer linear programming model, which can solve some strategic decision problems, including the network structure, entity capacities, flow of products and components, and collection levels, as well as the inventory levels. From the perspective of economic, environmental and social benefits, three objective functions are defined, including maximizing the net present value (NPV) of the system, minimizing the total CO2e emissions of supply chain activities, and maximizing social sustainability indicators. Finally, a numerical example is provided to verify the advantages of this model, and sensitivity analysis results are provided. The results show that changes in product demand and return rate will have a great impact on economic and social performance.


Author(s):  
Shayan Shafiee Moghadam ◽  
Amir Aghsami ◽  
Masoud Rabbani

Designing the supply chain network is one of the significant areas in e-commerce business management. This concept plays a crucial role in e-commerce systems. For example, location-inventory-pricing-routing of an e-commerce supply chain is considered a crucial issue in this field. This field established many severe challenges in the modern world, like maintaining the supply chain for returned items, preserving customers' trust and satisfaction, and developing an applicable supply chain with cost considerations. The research proposes a multi-objective mixed integer nonlinear programming model to design a closed-loop supply chain network based on the e-commerce context. The proposed model incorporates two objectives that optimize the business's total profits and the customers' satisfaction. Then, numerous numerical examples are generated and solved using the epsilon constraint method in GAMS optimization software. The validation of the given model has been tested for the large problems via a hybrid two-level non-dominated sort genetic algorithm. Finally, some sensitivity analysis has been performed to provide some managerial insights.


2015 ◽  
Vol 744-746 ◽  
pp. 1910-1914
Author(s):  
Zhuo Dai

This paper designs a model of muti-echelon closed-loop supply chain network (CLSC network). CLSC network includes raw material suppliers, manufacturers, distribution centers, collection centers and customer zones. The purpose of this paper is to minimize the overall costs of CLSC network. The overall costs include transportation cost, fixed cost, variable cost, penalty cost. This model is a mixed integer linear programming model. In general, it is very difficult to solve the model. Cplex12.6 is used in order to deal with this model. The results show that this model can be solved by Cplex12.6 well.


2020 ◽  
Vol 12 (2) ◽  
pp. 544 ◽  
Author(s):  
Guanshuang Jiang ◽  
Qi Wang ◽  
Ke Wang ◽  
Qianyu Zhang ◽  
Jian Zhou

Increasing concerns for sustainable development have motivated the study of closed-loop supply chain network design from a multidimensional perspective. To cope with such issues, this paper presents a general closed-loop supply chain network comprising various recovery options and further formulates a multi-objective mixed-integer linear programming model considering enterprise profit and service level simultaneously. Within this model, market segmentation is also considered to meet real-world operating conditions. Moreover, an ε -constraint method and two interactive fuzzy approaches are applied to find a global optimum for this model together with the decisions on the numbers, locations, and capacities of the facilities, as well as the material flow through the network. Ultimately, numerical experiments are conducted to demonstrate the viability and effectiveness of both the proposed model and solution approaches.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Amirreza Hooshyar Telegraphi ◽  
Akif Asil Bulgak

AbstractDue to the stringent awareness toward the preservation and resuscitation of natural resources and the potential economic benefits, designing sustainable manufacturing enterprises has become a critical issue in recent years. This presents different challenges in coordinating the activities inside the manufacturing systems with the entire closed-loop supply chain. In this paper, a mixed-integer mathematical model for designing a hybrid-manufacturing-remanufacturing system in a closed-loop supply chain is presented. Noteworthy, the operational planning of a cellular hybrid manufacturing-remanufacturing system is coordinated with the tactical planning of a closed-loop supply chain. To improve the flexibility and reliability in the cellular hybrid manufacturing-remanufacturing system, alternative process routings and contingency process routings are considered. The mathematical model in this paper, to the best of our knowledge, is the first integrated model in the design of hybrid cellular manufacturing systems which considers main and contingency process routings as well as reliability of the manufacturing system.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Sema Akin Bas ◽  
Beyza Ahlatcioglu Ozkok

By the green point of view, supply chain management (SCM), which contains supplier and location selection, production, distribution, and inventory decisions, is an important subject being examined in recent years by both practitioners and academicians. In this paper, the closed-loop supply chain (CLSC) network that can be mutually agreed by meeting at the level of common satisfaction of conflicting objectives is designed. We construct a multi-objective mixed-integer linear programming (MOMILP) model that allows decision-makers to more effectively manage firms’ closed-loop green supply chain (SC). An ecological perspective is brought by carrying out the recycling, remanufacturing and destruction to SCM in our proposed model. Maximize the rating of the regions in which they are located, minimize total cost and carbon footprint are considered as the objectives of the model. By constructing our model, the focus of customer satisfaction is met, as well as the production, location of facilities and order allocation are decided, and we also carry out the inventory control of warehouses. In our multi-product multi-component multi-time-period model, the solution is obtained with a fuzzy approach by using the min operator of Zimmermann. To illustrate the model, we provide a practical case study, and an optimal result containing a preferable level of satisfaction to the decision-maker is obtained.


2012 ◽  
Vol 190-191 ◽  
pp. 218-221 ◽  
Author(s):  
Yu Juan Chen ◽  
Dong Bo Liu ◽  
Hong Wei Mao ◽  
Zi Qiang Zhang

This paper addresses an integrated uncertain programming model for a closed-loop supply chain with manufacturing/remanufacturing hybrid system. The hybrid system is studied under the grey fuzzy uncertainty and grey uncertainty. The hybrid intelligent optimization algorithm integrating the grey fuzzy simulation, neural network and genetic algorithm can optimize the uncertain model. One numerical example is given to illustrate the effectiveness of the proposed model and algorithm.


Sign in / Sign up

Export Citation Format

Share Document