scholarly journals Probabilistic hazard assessment: Application to geomagnetic activity

Author(s):  
Gemma Richardson ◽  
Alan W P Thomson

Probabilistic Hazard Assessment (PHA) provides an appropriate methodology for assessing space weather hazard and its impact on technology. PHA is widely used in the geosciences to determine the probability of exceedance of critical thresholds, caused by one or more hazard sources. PHA has proved useful where there are limited historical data to estimate the likelihood of specific impacts. PHA has also driven the development of empirical and physical models, or ensembles of models, to replace measured data. Here we aim to highlight the PHA method to the space weather community and provide an example of it could be used. In terms of space weather impact, the critical hazard thresholds might include the Geomagnetically Induced Current in a specific high voltage power transformer neutral, or the local pipe-to-soil potential in a particular metal pipe. We illustrate PHA in the space weather context by applying it to a twelve-year dataset of Earth-directed solar Coronal Mass Ejections (CME), which we relate to the probability that the global three-hourly geomagnetic activity index K p exceeds specific thresholds. We call this a ‘Probabilistic Geomagnetic Hazard Assessment’, or PGHA. This provides a simple but concrete example of the method. We find that the cumulative probability of K p > 6-, > 7-, > 8- and K p = 9o is 0.359, 0.227, 0.090, 0.011, respectively, following observation of an Earth-directed CME, summed over all CME launch speeds and solar source locations. This represents an order of magnitude increase in the a priori probability of exceeding these thresholds, according to the historical K p distribution. For the lower Kp thresholds, the results are distorted somewhat by our exclusion of coronal hole high speed stream effects. The PGHA also reveals useful (for operational forecasters) probabilistic associations between solar source location and subsequent maximum Kp .

Space Weather ◽  
2010 ◽  
Vol 8 (12) ◽  
pp. n/a-n/a ◽  
Author(s):  
D. Du ◽  
W. Y. Xu ◽  
M. X. Zhao ◽  
B. Chen ◽  
J. Y. Lu ◽  
...  

2011 ◽  
Vol 2 (3) ◽  
pp. 205-210 ◽  
Author(s):  
Igor Savel'evich Fal'kovich ◽  
M. R. Olyak ◽  
Nikolai Nikolaevich Kalinichenko ◽  
I. N. Bubnov

Vestnik MEI ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. 82-90
Author(s):  
Dmitriy I. Panfilov ◽  
◽  
Mikhail G. Astashev ◽  
Aleksandr V. Gorchakov ◽  
◽  
...  

The specific features relating to voltage control of power transformers at distribution network transformer substations are considered. An approach to implementing high-speed on-load voltage control of serially produced 10/0.4 kV power transformers by using a solid-state on-load tap changer (SOLTC) is presented. An example of the SOLTC circuit solution on the basis of thyristor switches is given. On-load voltage control algorithms for power transformers equipped with SOLTC that ensure high reliability and high-speed operation are proposed. The SOLTC performance and the operability of the suggested voltage control algorithms were studied by simulation in the Matlab/Simulink environment and by experiments on the SOLTC physical model. The structure and peculiarities of the used simulation Matlab model are described. The SOLTC physical model design and its parameters are presented. The results obtained from the simulating the SOLTC operation on the Matlab model and from the experiments on the SOLTS physical model jointly with a power transformer under different loads and with using different control algorithms are given. An analysis of the experimental study results has shown the soundness of the adopted technical solutions. It has been demonstrated that the use of an SOLTC ensures high-speed voltage control, high efficiency and reliability of its operation, and arcless switching of the power transformer regulating taps without load voltage and current interruption. By using the SOLTC operation algorithms it is possible to perform individual phase voltage regulation in a three-phase 0.4 kV distribution network. The possibility of integrating SOLTC control and diagnostic facilities into the structure of modern digital substations based on the digital interface according to the IEC 61850 standard is noted.


2016 ◽  
Vol 34 (12) ◽  
pp. 1159-1164 ◽  
Author(s):  
Pieter Benjamin Kotzé

Abstract. In this paper we use wavelets and Lomb–Scargle spectral analysis techniques to investigate the changing pattern of the different harmonics of the 27-day solar rotation period of the AE (auroral electrojet) index during various phases of different solar cycles between 1960 and 2014. Previous investigations have revealed that the solar minimum of cycles 23–24 exhibited strong 13.5- and 9.0-day recurrence in geomagnetic data in comparison to the usual dominant 27.0-day synodic solar rotation period. Daily mean AE indices are utilized to show how several harmonics of the 27-day recurrent period change during every solar cycle subject to a 95 % confidence rule by performing a wavelet analysis of each individual year's AE indices. Results show that particularly during the solar minimum of 23–24 during 2008 the 27-day period is no longer detectable above the 95 % confidence level. During this interval geomagnetic activity is now dominated by the second (13.5-day) and third (9.0-day) harmonics. A Pearson correlation analysis between AE and various spherical harmonic coefficients describing the solar magnetic field during each Carrington rotation period confirms that the solar dynamo has been dominated by an unusual combination of sectorial harmonic structure during 23–24, which can be responsible for the observed anomalously low solar activity. These findings clearly show that, during the unusual low-activity interval of 2008, auroral geomagnetic activity was predominantly driven by high-speed solar wind streams originating from multiple low-latitude coronal holes distributed at regular solar longitude intervals.


2022 ◽  
Author(s):  
Yifan Li ◽  
Yongyong Xiang ◽  
Baisong Pan ◽  
Luojie Shi

Abstract Accurate cutting tool remaining useful life (RUL) prediction is of significance to guarantee the cutting quality and minimize the production cost. Recently, physics-based and data-driven methods have been widely used in the tool RUL prediction. The physics-based approaches may not accurately describe the time-varying wear process due to a lack of knowledge for underlying physics and simplifications involved in physical models, while the data-driven methods may be easily affected by the quantity and quality of data. To overcome the drawbacks of these two approaches, a hybrid prognostics framework considering tool wear state is developed to achieve an accurate prediction. Firstly, the mapping relationship between the sensor signal and tool wear is established by support vector regression (SVR). Then, the tool wear statuses are recognized by support vector machine (SVM) and the results are put into a Bayesian framework as prior information. Thirdly, based on the constructed Bayesian framework, parameters of the tool wear model are updated iteratively by the sliding time window and particle filter algorithm. Finally, the tool wear state space and RUL can be predicted accordingly using the updating tool wear model. The validity of the proposed method is demonstrated by a high-speed machine tool experiment. The results show that the presented approach can effectively reduce the uncertainty of tool wear state estimation and improve the accuracy of RUL prediction.


2021 ◽  
Author(s):  
Lauri Holappa ◽  
Timo Asikainen ◽  
Kalevi Mursula

<p>The interaction of the solar wind with the Earth’s magnetic field produces geomagnetic activity, which is critically dependent on the orientation of the interplanetary magnetic field (IMF). Most solar wind coupling functions quantify this dependence on the IMF orientation with the so-called IMF clock angle in a way, which is symmetric with respect to the sign of the B<sub>y</sub> component. However, recent studies have shown that IMF B<sub>y</sub> is an additional, independent driver of high-latitude geomagnetic activity, leading to higher (weaker) geomagnetic activity in Northern Hemisphere (NH) winter for B<sub>y</sub> > 0 (B<sub>y</sub> < 0). For NH summer the dependence on the B<sub>y</sub> sign is reversed. We quantify the size of this explicit B<sub>y</sub>-effect with respect to the solar wind coupling function, both for northern and southern high-latitude geomagnetic activity. We show that for a given value of solar wind coupling function, geomagnetic activity is about 40% stronger for B<sub>y</sub> > 0 than for B<sub>y</sub> < 0 in NH winter. We also discuss recent advances in the physical understanding of the B<sub>y</sub>-effect. Our results highlight the importance of the IMF B<sub>y</sub>-component for space weather and must be taken into account in future space weather modeling.</p>


Sign in / Sign up

Export Citation Format

Share Document