scholarly journals Spectral analysis of auroral geomagnetic activity during various solar cycles between 1960 and 2014

2016 ◽  
Vol 34 (12) ◽  
pp. 1159-1164 ◽  
Author(s):  
Pieter Benjamin Kotzé

Abstract. In this paper we use wavelets and Lomb–Scargle spectral analysis techniques to investigate the changing pattern of the different harmonics of the 27-day solar rotation period of the AE (auroral electrojet) index during various phases of different solar cycles between 1960 and 2014. Previous investigations have revealed that the solar minimum of cycles 23–24 exhibited strong 13.5- and 9.0-day recurrence in geomagnetic data in comparison to the usual dominant 27.0-day synodic solar rotation period. Daily mean AE indices are utilized to show how several harmonics of the 27-day recurrent period change during every solar cycle subject to a 95 % confidence rule by performing a wavelet analysis of each individual year's AE indices. Results show that particularly during the solar minimum of 23–24 during 2008 the 27-day period is no longer detectable above the 95 % confidence level. During this interval geomagnetic activity is now dominated by the second (13.5-day) and third (9.0-day) harmonics. A Pearson correlation analysis between AE and various spherical harmonic coefficients describing the solar magnetic field during each Carrington rotation period confirms that the solar dynamo has been dominated by an unusual combination of sectorial harmonic structure during 23–24, which can be responsible for the observed anomalously low solar activity. These findings clearly show that, during the unusual low-activity interval of 2008, auroral geomagnetic activity was predominantly driven by high-speed solar wind streams originating from multiple low-latitude coronal holes distributed at regular solar longitude intervals.

2004 ◽  
Vol 22 (1) ◽  
pp. 93-100 ◽  
Author(s):  
E. W. Cliver ◽  
L. Svalgaard ◽  
A. G. Ling

Abstract. We investigate the cause of the unusually strong semiannual variation of geomagnetic activity observed in the solar minimum years of 1954 and 1996. For 1996 we separate the contributions of the three classical modulation mechanisms (axial, equinoctial, and Russell-McPherron) to the six-month wave in the aam index and find that all three contribute about equally. This is in contrast to the longer run of geomagnetic activity (1868-1998) over which the equinoctial effect accounts for ∼70% of the semiannual variation. For both 1954 and 1996, we show that the Russell-McPherron effect was enhanced by the Rosenberg-Coleman effect (an axial polarity effect) which increased the amount of the negative (toward Sun) [positive (away from Sun)] polarity field observed during the first [second] half of the year; such fields yield a southward component in GSM coordinates. Because this favourable condition occurs only for alternate solar cycles, the marked semiannual variation in 1954 and 1996 is a manifestation of the 22-year cycle of geomagnetic activity. The 11-year evolution of the heliospheric current sheet (HCS) also contributes to the strong six-month wave during these years. At solar minimum, the streamer belt at the base of the HCS is located near the solar equator, permitting easier access to high speed streams from polar coronal holes when the Earth is at its highest heliographic latitudes in March and September. Such an axial variation in solar wind speed was observed for 1996 and is inferred for 1954. Key words. Magnetosphere (solar wind – magnetosphere interactions; storms and substorms)


2004 ◽  
Vol 22 (4) ◽  
pp. 1171-1176 ◽  
Author(s):  
E. M. Apostolov ◽  
D. Altadill ◽  
M. Todorova

Abstract. Solar cycle variations of the amplitudes of the 27-day solar rotation period reflected in the geomagnetic activity index Ap, solar radio flux F10.7cm and critical frequency foF2 for mid-latitude ionosonde station Moscow from the maximum of sunspot cycle 18 to the maximum of cycle 23 are examined. The analysis shows that there are distinct enhancements of the 27-day amplitudes for foF2 and Ap in the late declining phase of each solar cycle while the amplitudes for F10.7cm decrease gradually, and the foF2 and Ap amplitude peaks are much larger for even-numbered solar cycles than for the odd ones. Additionally, we found the same even-high and odd-low pattern of foF2 for other mid-latitude ionosonde stations in Northern and Southern Hemispheres. This property suggests that there exists a 22-year cycle in the F2-layer variability coupled with the 22-year cycle in the 27-day recurrence of geomagnetic activity. Key words. Ionosphere (mid-latitude ionosphere; ionosphere- magnetosphere interactions) – Magnetospheric physics (solar wind-magnetosphere interactions)


2020 ◽  
Author(s):  
Timofey Sagitov ◽  
Roman Kislov

<p>High speed streams originating from coronal holes are long-lived plasma structures that form corotating interaction regions (CIRs) or stream interface regions (SIRs) in the solar wind. The term CIR is used for streams existing for at least one solar rotation period, and the SIR stands for streams with a shorter lifetime. Since the plasma flows from coronal holes quasi-continuously, CIRs/SIRs simultaneously expand and rotate around the Sun, approximately following the Parker spiral shape up to the Earth’s orbit.</p><p>Coronal hole streams rotate not only around the Sun but also around their own axis of simmetry, resembling a screw. This effect may occur because of the following mechanisms: (1) the existence of a difference between the solar wind speed at different sides of the stream, (2) twisting of the magnetic field frozen into the plasma, and  (3) a vortex-like motion of the edge of the mothering coronal hole at the Sun. The screw type of the rotation of a CIR/SIR can lead to centrifugal instability if CIR/SIR inner layers have a larger angular velocity than the outer. Furthermore, the rotational plasma movement and the stream distortion can twist magnetic field lines. The latter contributes to the pinch effect in accordance with a well-known criterion of Suydam instability (Newcomb, 1960, doi: 10.1016/0003-4916(60)90023-3). Owing to the presence of a cylindrical current sheet at the boundary of a coronal hole, conditions for tearing instability can also appear at the CIR/SIR boundary. Regardless of their geometry, large scale current sheets are subject to various instabilities generating plasmoids. Altogether, these effects can lead to the formation of a turbulent region within CIRs/SIRs, making them filled with current sheets and plasmoids. </p><p>We study a substructure of CIRs/SIRs, characteristics of their rotation in the solar wind, and give qualitative estimations of possible mechanisms which lead to splitting of the leading edge a coronal hole flow and consequent formation of current sheets within CIRs/SIRs.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1186
Author(s):  
Paul Prikryl ◽  
Vojto Rušin ◽  
Emil A. Prikryl

Extreme weather events, such as heavy rainfall causing floods and flash floods continue to present difficult challenges in forecasting. Using gridded daily precipitation datasets in conjunction with solar wind data it is shown that high-rate precipitation occurrence is modulated by solar wind high-speed streams. Superposed epoch analysis shows a statistical increase in the occurrence of high-rate precipitation following arrivals of high-speed streams from coronal holes, including their recurrence with the solar rotation period of 27 days. These results are consistent with the observed tendency of heavy rainfall leading to floods and flash floods in Japan, Australia, and continental United States to follow arrivals of high-speed streams. A possible role of the solar wind–magnetosphere–ionosphere–atmosphere coupling in weather as mediated by globally propagating aurorally excited atmospheric gravity waves triggering conditional moist instabilities leading to convection in the troposphere that has been proposed in previous publications is highlighted.


The connection between geomagnetic disturbances recurring with the 27 day synodic solar rotation period and streams of plasma emitted from particular regions on the Sun (so-called M-regions) has been one of the long-standing problems of solar terrestrial physics. The ‘ plasma streams ’ have been identified with long-lived streams of fast solar wind, imbedded in unipolar magnetic ‘ sectors', for more than a decade. The solar sources of these streams have been identified unequivocally only within the past few years as large-scale coronal regions of open, diverging magnetic fields and abnormally low particle densities, observed as ‘coronal holes’. The temporal evolution of holes and streams seems to reflect the evolution of the large-scale solar magnetic fields; the observed spatial pattern of holes suggests a grand three-dimensional structure of solar wind flow and interplanetary magnetic fields organized by a near-equatorial neutral sheet. The conclusion that much of the solar wind comes from coronal holes implies several important modifications of our ideas regarding the physical origins of the solar wind and any theoretical models of solar wind formation.


2021 ◽  
Vol 39 (4) ◽  
pp. 769-793
Author(s):  
Paul Prikryl ◽  
Vojto Rušin ◽  
Emil A. Prikryl ◽  
Pavel Šťastný ◽  
Maroš Turňa ◽  
...  

Abstract. Heavy rainfall events causing floods and flash floods are examined in the context of solar wind coupling to the magnetosphere–ionosphere–atmosphere system. The superposed epoch (SPE) analyses of solar wind variables have shown the tendency of severe weather to follow arrivals of high-speed streams from solar coronal holes. Precipitation data sets based on rain gauge and satellite sensor measurements are used to examine the relationship between the solar wind high-speed streams and daily precipitation rates over several midlatitude regions. The SPE analysis results show an increase in the occurrence of high precipitation rates following arrivals of high-speed streams, including recurrence with a solar rotation period of 27 d. The cross-correlation analysis applied to the SPE averages of the green (Fe XIV; 530.3 nm) corona intensity observed by ground-based coronagraphs, solar wind parameters, and daily precipitation rates show correlation peaks at lags spaced by solar rotation period. When the SPE analysis is limited to years around the solar minimum (2008–2009), which was dominated by recurrent coronal holes separated by ∼ 120∘ in heliographic longitude, significant cross-correlation peaks are found at lags spaced by 9 d. These results are further demonstrated by cases of heavy rainfall, floods and flash floods in Europe, Japan, and the USA, highlighting the role of solar wind coupling to the magnetosphere–ionosphere–atmosphere system in severe weather, mediated by aurorally excited atmospheric gravity waves.


2020 ◽  
Vol 10 ◽  
pp. 52
Author(s):  
Alessandro Ippolito ◽  
Loredana Perrone ◽  
Christina Plainaki ◽  
Claudio Cesaroni

The variations of the hourly observations of the critical frequency foF2, recorded at the Ionospheric Observatory of Rome by the AIS-INGV ionosonde (geographic coordinates 41.82° N, 12.51° E; geomagnetic coordinates 41.69° N, 93.97° E) during the low activity periods at the turn of solar cycles 21–22, 22–23 and 23–24, are investigated. Deviations of foF2 greater than ± 15% with respect to a background level, and with a minimum duration of 3 h, are here considered anomalous. The dependence of these foF2 anomalies on geomagnetic activity has been accurately investigated. Particular attention has been paid to the last deep solar minimum 2007–2009, in comparison with the previous solar cycle minima. The lack of day-time anomalous negative variations in the critical frequency of the F2 layer, is one of the main findings of this work. Moreover, the analysis of the observed foF2 anomalies confirms the existence of two types of positive F2 layer disturbances, characterised by different morphologies and, different underlying physical processes. A detailed analysis of four specific cases allows the definition of possible scenarios for the explanation of the mechanisms behind the generation of the foF2 anomalies.


2020 ◽  
Vol 500 (3) ◽  
pp. 2786-2797
Author(s):  
A A Melkumyan ◽  
A V Belov ◽  
M A Abunina ◽  
A A Abunin ◽  
E A Eroshenko ◽  
...  

ABSTRACT The behaviour of the solar wind (SW) proton temperature and velocity and their relationship during Forbush decreases (FDs) associated with various types of solar source – coronal mass ejections (CMEs) and coronal holes (CHs) – have been studied. Analysis of cosmic ray variations, SW temperature, velocity, density, plasma beta, and magnetic field (from 1965–2019) is carried out using three databases: the OMNI database, Variations of Cosmic Rays database (IZMIRAN) and Forbush Effects & Interplanetary Disturbances database (IZMIRAN). Comparison of the observed SW temperature (T) and velocity (V) for the undisturbed SW allows us to derive a formula for the expected SW temperature (Texp, the temperature given by a T–V formula, if V is the observed SW speed). The results reveal a power-law T–V dependence with a steeper slope for low speeds (V < 425 km s−1, exponent = 3.29 ± 0.02) and flatter slope for high speeds (V > 425 km s−1, exponent = 2.25 ± 0.02). A study of changes in the T–V dependence over the last five solar cycles finds that this dependence varies with solar activity. The calculated temperature index KT = T/Texp can be used as an indicator of interplanetary and solar sources of FDs. It usually has abnormally large values in interaction regions of different-speed SW streams and abnormally low values inside magnetic clouds (MCs). The results obtained help us to identify the different kinds of interplanetary disturbance: interplanetary CMEs, sheaths, MCs, corotating interaction regions, high-speed streams from CHs, and mixed events.


2016 ◽  
Vol 34 (4) ◽  
pp. 451-462 ◽  
Author(s):  
Virginia Klausner ◽  
Andrés Reinaldo Rodriguez Papa ◽  
Cláudia Maria Nicole Cândido ◽  
Margarete Oliveira Domingues ◽  
Odim Mendes

Abstract. This paper proposes a new method to evaluate geomagnetic activity based on wavelet analysis during the solar minimum activity (2007). In order to accomplish this task, a newly developed algorithm called effectiveness wavelet coefficient (EWC) was applied. Furthermore, a comparison between the 5 geomagnetically quiet days determined by the Kp-based method and by wavelet-based method was performed. This paper provides a new insight since the geomagnetic activity indexes are mostly designed to quantify the extent of disturbance rather than the quietness. The results suggest that the EWC can be used as an alternative tool to accurately detect quiet days, and consequently, it can also be used as an alternative to determine the Sq baseline to the current Kp-based 5 quietest days method. Another important aspect of this paper is that most of the quietest local wavelet candidate days occurred in an interval 2 days prior to the high-speed-stream-driven storm events. In other words, the EWC algorithm may potentially be used to detect the quietest magnetic activity that tends to occur just before the arrival of high-speed-stream-driven storms.


1967 ◽  
Vol 45 (8) ◽  
pp. 2733-2748 ◽  
Author(s):  
Masahiro Kodama

Statistical studies of periodic fluctuations of the cosmic-ray diurnal variation have been performed, using neutron and meson component data obtained by the high-counting-rate cosmic-ray monitors at Deep River. The data cover an interval from May 1962 to October 1964, a period of descending solar activity ending near the solar minimum. It is shown that a 27-day recurrence tendency of the amplitude of the diurnal variation occasionally appears as well as shorter recurrent variations, ranging from one-half to one-sixth of the solar rotation period. The correlations of these fluctuations with some typical solar and terrestrial indices are examined in order to search for possible origins of the shorter recurrent variations. A possible connection with the Kp index exists.


Sign in / Sign up

Export Citation Format

Share Document