Commentary: Measurement of regional blood flow in the brain by MRI raises new questions for adolescents with congenital heart disease

Author(s):  
Richard A Jonas
2003 ◽  
Vol 24 (5) ◽  
pp. 436-443 ◽  
Author(s):  
M. T. Donofrio ◽  
Y. A. Bremer ◽  
R. M. Schieken ◽  
C. Gennings ◽  
L. D. Morton ◽  
...  

2009 ◽  
Vol 25 (1) ◽  
pp. 167-172 ◽  
Author(s):  
Lv Guorong ◽  
Li Shaohui ◽  
Jin Peng ◽  
Lin Huitong ◽  
Li Boyi ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 213-219
Author(s):  
R. Allen Ligon ◽  
Larry A. Latson ◽  
Mark M. Ruzmetov ◽  
Kak-Chen Chan ◽  
Immanuel I. Turner ◽  
...  

Background: Surgical pulmonary artery banding (PAB) has been limited in practice because of later requirement for surgical removal or adjustment. The aim of this study is to describe our experience creating a dilatable PAB via transcatheter balloon dilation (TCBD) in congenital heart disease (CHD) patients. Methods: Retrospective chart review of adjustable PAB—outline anatomical variants palliated and patient outcomes. Results: Sixteen patients underwent dilatable PAB—median age 52 days (range 4-215) and weight 3.12 kg (1.65-5.8). Seven (44%) of the patients were premature, 11 (69%) had ventricular septal defect(s) with pulmonary over-circulation, four (25%) atrioventricular septal defects, and four (25%) single ventricle physiology. Subsequent to the index procedure: five patients have undergone intracardiac complete repair, six patients remain well palliated with no additional intervention, and four single ventricles await their next palliation. One patient died from necrotizing enterocolitis (unrelated to PAB) and one patient required a pericardiocentesis postoperatively. Five patients underwent TCBD of the PAB without complication—Two had one TCBD, two had two TCBD, and another had three TCBD. The median change in saturation was 14% (complete range 6-22) and PAB diameter 1.7 mm (complete range 1.1-5.2). Median time from PAB to most recent outpatient follow-up was 868 days (interquartile range 190-1,079). Conclusions: Our institution has standardized a PAB technique that allows for transcatheter incremental increases in pulmonary blood flow over time. This methodology has proven safe and effective enough to supplant other institutional techniques of limiting pulmonary blood flow in most patients—allowing for interval growth or even serving as the definitive palliation.


2018 ◽  
pp. 1-6

Background: Hypocapnia is suggested in decreasing pulmonary vascular resistance in cyanotic congenital heart disease patients undergoing definitive repair. But its effects on cerebral and renal circulation are unclear. Hence the effect of changes in arterial blood carbon dioxide tensions (PaCo2 ) on cerebral (ScO2 %) and renal (SsO2 %) oxygenation indices using Near Infrared spectroscopy (NIRS) is examined. Methods: We did a prospective observational study in sixty-eight children who underwent elective cardiac surgery for various cyanotic congenital heart diseases. PaCo2 , ScO2 % and SsO2 % were obtained before induction of anesthesia, after anesthesia induction at normocapnic or mild hypercapnic ventilation (EtCo2 =40 mmHg) and again at hypocapnic ventilation (EtCo2 =30 mmHg). Regression analysis was done between PaCo2 and NIRS-C/ScO2 % and PaCo2 and NIRS-R/SsO2 % at both EtCo2 40 and 30 mmHg. Repeated measure analysis performed to evaluate the significance of change in NIRS-C and NIRS-R from pre-anesthesia induction to when EtCo2 was 40 and then 30 mmHg post anesthesia induction. Results: With decrease in EtCo2 , PaCo2 (p=0.0001), NIRS-C (p=0.0001) and NIRS-R (p=0.0001) decreased significantly. At EtCo2 of 40 and 30 mmHg, PaCo2 had significant positive correlation with NIRS-C (R2 =0.77, p=0.0001 and R2 =0.92, p=0.0001 respectively) and had insignificant correlation with NIRS-R (R2 =0.03, p=0.12 and R2 =0.008, p=0.46 respectively). Significant changes in NIRS-C {p=0.0001} and NIRS-R {p=0.0001} occurred from pre-induction to when EtCo2 was 40 and then to 30 mmHg. Conclusion: A decrease in NIRS-C and NIRS-R is probably from decreased cerebral and splanchnic blood flow during hypocapnic ventilation, leading to demand supply mismatch. Hypocapnic ventilation in cyanotic children has potential to cause cerebral hypoxia. Abbreviations: CCHD: Cyanotic Congenital Heart Disease; QP: Pulmonary blood flow; Do2 : Oxygen delivery; SpO2 : peripheral pulse oximetry; NIRS: Near Infrared Spectroscopy; NIRS-C/ScO2 %: Regional Cerebral Oxygen saturation; NIRS-R/SsO2 %: Regional Somatic/renal Oxygen saturation; HCT: Hematocrit; ECG: Electrocardiography; CPB: cardiopulmonary bypass; TOF: Tetralogy of fallot; BDG: Bidirectional Glenn Shunt; BT shunt: Blalock Taussig shunt; DORV: Double outlet right ventricle; FiO2 : Inspired oxygen concentration; ABG: Arterial blood gas; PaO2 : Arterial oxygen partial pressure; PaCo2 : Arterial carbon dioxide partial pressure; HR: Heart rate; MAP: Mean Arterial Pressure; CVP: Central Venous Pressure


PEDIATRICS ◽  
1978 ◽  
Vol 61 (4) ◽  
pp. 534-536
Author(s):  
Alan B. Lewis ◽  
Paul R. Lurie

A small-for-gestational-age premature infant with severe tetralogy of Fallot was treated with prostaglandin E1 to dialate the ductus arteriosus and increase pulmonary blood flow. The infusion was continued for 29 days without complication at which time surgery was performed.


2020 ◽  
Vol 73 (10) ◽  
pp. 859-861
Author(s):  
Laura Marfil-Godoy ◽  
Gerard Martí-Aguasca ◽  
Queralt Ferrer-Menduiña ◽  
Gemma Giralt-García ◽  
Pedro Betrián-Blasco

2017 ◽  
Vol 26 (1) ◽  
pp. 28-37 ◽  
Author(s):  
Claire M Lawley ◽  
Kathryn M Broadhouse ◽  
Fraser M Callaghan ◽  
David S Winlaw ◽  
Gemma A Figtree ◽  
...  

Imaging-based evaluation of cardiac structure and function remains paramount in the diagnosis and monitoring of congenital heart disease in childhood. Accurate measurements of intra- and extracardiac hemodynamics are required to inform decision making, allowing planned timing of interventions prior to deterioration of cardiac function. Four-dimensional flow magnetic resonance imaging is a nonionizing noninvasive technology that allows accurate and reproducible delineation of blood flow at any anatomical location within the imaging volume of interest, and also permits derivation of physiological parameters such as kinetic energy and wall shear stress. Four-dimensional flow is the focus of a great deal of attention in adult medicine, however, the translation of this imaging technique into the pediatric population has been limited to date. A more broad-scaled application of 4-dimensional flow in pediatric congenital heart disease stands to increase our fundamental understanding of the cause and significance of abnormal blood flow patterns, may improve risk stratification, and inform the design and use of surgical and percutaneous correction techniques. This paper seeks to outline the application of 4-dimensional flow in the assessment and management of the pediatric population affected by congenital heart disease.


2020 ◽  
Vol 28 (8) ◽  
pp. 520-532
Author(s):  
Rabin Gerrah ◽  
Stephen J Haller

Computational fluid dynamics has become an important tool for studying blood flow dynamics. As an in-silico collection of methods, computational fluid dynamics is noninvasive and provides numerical values for the most important parameters of blood flow, such as velocity and pressure that are crucial in hemodynamic studies. In this primer, we briefly explain the basic theory and workflow of the two most commonly applied computational fluid dynamics techniques used in the congenital heart disease literature: the finite element method and the finite volume method. We define important terminology and include specific examples of how using these methods can answer important clinical questions in congenital cardiac surgery planning and perioperative patient management.


Sign in / Sign up

Export Citation Format

Share Document