Mycobacterium tuberculosis: the treatment of active disease

2003 ◽  
Vol 18 (4) ◽  
pp. 292-306 ◽  
Author(s):  
S NERALLA
2016 ◽  
Vol 283 (1831) ◽  
pp. 20160499 ◽  
Author(s):  
Rebecca H. Chisholm ◽  
Mark M. Tanaka

Mycobacterium tuberculosis has an unusual natural history in that the vast majority of its human hosts enter a latent state that is both non-infectious and devoid of any symptoms of disease. From the pathogen perspective, it seems counterproductive to relinquish reproductive opportunities to achieve a détente with the host immune response. However, a small fraction of latent infections reactivate to the disease state. Thus, latency has been argued to provide a safe harbour for future infections which optimizes the persistence of M. tuberculosis in human populations. Yet, if a pathogen begins interactions with humans as an active disease without latency, how could it begin to evolve latency properties without incurring an immediate reproductive disadvantage? We address this question with a mathematical model. Results suggest that the emergence of tuberculosis latency may have been enabled by a mechanism akin to cryptic genetic variation in that detrimental latency properties were hidden from natural selection until their expression became evolutionarily favoured.


2020 ◽  
Vol 58 (6) ◽  
Author(s):  
Danilo Buonsenso ◽  
Giovanni Delogu ◽  
Clelia Perricone ◽  
Roberta Grossi ◽  
Angela Careddu ◽  
...  

ABSTRACT Compared to its predecessor QuantiFERON-TB Gold In Tube (QFT-IT), QuantiFERON-TB Gold Plus (QFT-Plus) contains an additional antigen tube (TB2), stimulating both CD4+ and CD8+ T cells. The ability to discriminate CD4+ and CD8+ responses is suggested to be useful in differentiating stages of Mycobacterium tuberculosis infection. While QFT-Plus has already been evaluated in adults, there are not enough data in children evaluated for suspected active tuberculosis (TB) or latent TB infection (LTBI). A prospective cross-sectional study was conducted among children aged 0 to 17 years who were evaluated for suspected active TB or screened for LTBI. All children underwent QFT-Plus and further clinical, radiological, and/or microbiological analyses according to clinical scenario. Of the 198 children enrolled, 43 (21.7%) were tested because of suspicion of active TB. A total of 12/43 (27.9%) were diagnosed with active TB, and among these, 10/12 (83.3%) had a positive QFT-Plus assay. Of the 155 children screened for LTBI, 18 (11.6%) had a positive QFT-Plus, and 5 (2.5%) had an indeterminate result. TB1 and TB2 quantitative responses were not able to discriminate active disease from latent infection. The percent agreement between TB1 and TB2 was 100%. QFT-Plus assay showed good sensitivity for active TB and was particularly useful for the evaluation of children with suspected LTBI, giving a low rate of indeterminate results in this group. More studies are needed to properly evaluate QFT-Plus ability in discriminating active disease from latent infection.


2013 ◽  
Vol 43 (6) ◽  
pp. 1568-1577 ◽  
Author(s):  
Virginie Rozot ◽  
Selena Vigano ◽  
Jesica Mazza-Stalder ◽  
Elita Idrizi ◽  
Cheryl L. Day ◽  
...  

Author(s):  
Ji Young Hong ◽  
Ahreum Kim ◽  
So Yeong Park ◽  
Sang-Nae Cho ◽  
Hazel M. Dockrell ◽  
...  

BackgroundThe Beijing strain of Mycobacterium tuberculosis (M. tb) has been most frequently isolated from TB patients in South Korea, and the hyper-virulent Beijing/K genotype is associated with TB outbreaks. To examine the diagnostic potential of Beijing/K-specific peptides, we performed IFN-γ release assays (IGRA) using a MTBK antigen tube containing Beijing/K MTBK_24800, ESAT-6, and CFP-10 peptides in a cohort studied during a school TB outbreak.MethodsA total of 758 contacts were investigated for M. tb infection, and 43 contacts with latent TB infection (LTBI) and 25 active TB patients were enrolled based on serial screening with QuantiFERON-TB Gold In-Tube tests followed by clinical examinations. Blood collected in MTBK antigen tubes was utilized for IGRA and multiplex cytokine bead arrays. Immune responses were retested in 24 patients after TB treatment, and disease progression was investigated in subjects with LTBI.ResultsTotal proportions of active disease and LTBI during the outbreak were 3.7% (28/758) and 9.2% (70/758), respectively. All clinical isolates had a Beijing/K M. tb genotype. IFN-γ responses to the MTBK antigen identified M. tb infection and distinguished between active disease and LTBI. After anti-TB treatment, IFN-γ responses to the MTBK antigen were significantly reduced, and strong TNF-α responses at diagnosis were dramatically decreased.ConclusionsMTBK antigen-specific IFN-γ has diagnostic potential for differentiating M. tb infection from healthy controls, and between active TB and LTBI as well. In addition, TNF-α is a promising marker for monitoring therapeutic responses. These data provide informative readouts for TB diagnostics and vaccine studies in regions where the Beijing/K strain is endemic.


Sign in / Sign up

Export Citation Format

Share Document