Deletion of the 19kDa antigen does not alter the protective efficacy of BCG

2000 ◽  
Vol 80 (6) ◽  
pp. 243-247 ◽  
Author(s):  
V.V. Yeremeev ◽  
G.R. Stewart ◽  
O. Neyrolles ◽  
K. Skrabal ◽  
V.G. Avdienko ◽  
...  
Keyword(s):  
2017 ◽  
Vol 1 (6) ◽  
pp. 533-537
Author(s):  
Lorenz von Seidlein ◽  
Borimas Hanboonkunupakarn ◽  
Podjanee Jittmala ◽  
Sasithon Pukrittayakamee

RTS,S/AS01 is the most advanced vaccine to prevent malaria. It is safe and moderately effective. A large pivotal phase III trial in over 15 000 young children in sub-Saharan Africa completed in 2014 showed that the vaccine could protect around one-third of children (aged 5–17 months) and one-fourth of infants (aged 6–12 weeks) from uncomplicated falciparum malaria. The European Medicines Agency approved licensing and programmatic roll-out of the RTSS vaccine in malaria endemic countries in sub-Saharan Africa. WHO is planning further studies in a large Malaria Vaccine Implementation Programme, in more than 400 000 young African children. With the changing malaria epidemiology in Africa resulting in older children at risk, alternative modes of employment are under evaluation, for example the use of RTS,S/AS01 in older children as part of seasonal malaria prophylaxis. Another strategy is combining mass drug administrations with mass vaccine campaigns for all age groups in regional malaria elimination campaigns. A phase II trial is ongoing to evaluate the safety and immunogenicity of the RTSS in combination with antimalarial drugs in Thailand. Such novel approaches aim to extract the maximum benefit from the well-documented, short-lasting protective efficacy of RTS,S/AS01.


2003 ◽  
Vol 32 (3) ◽  
pp. 295-302 ◽  
Author(s):  
C. F. Crouch ◽  
S. J. Andrews ◽  
R. G. Ward ◽  
M. J. Francis
Keyword(s):  

Author(s):  
Fransisca Diana Alexandra ◽  
Dian Mutiasari ◽  
Trilianty Lestarisa ◽  
Eko Suhartono

The present study was undertaken to investigate the protective effect of ethanolic citronella grass (C. nardus) leaves extract against mercury (Hg) induced glucose metabolism alteration in rats. Four groups of rats were selected, with 6 rats for each group. Animals of group I was received a 1 ppm of Hg only. Animals of groups II, III, and IV received a combination of 1 ppm Hg and plant extract in different dose (1650, 2520, and 3360 mg/ml). The experiment lasted for 4 weeks. The various parameters studied included liver weight, liver glucose, glycogen, and malondialdehyde (MDA) level in all groups after treatment. The results of this present studies showed that the Hg-induced glucose metabolism alteration in rats which can be seen from the increase of liver glucose and the decreasing of liver glycogen levels. The results also showed that the Hginduced glucose metabolism alteration through its activities in the trigger the liver cells damage which can be seen from the decreasing of liver weight and the increase of liver MDA level. The ethanolic of C. nardus leaves extract shows a protective effect to maintain all parameters into a better a condition which can be seen from the significant increase in liver weight and liver glycogen level, and the significant decrease in liver glucose and MDA levels. The present study indicated that the ethanolic C. nardus leaves extract showed a potential protective effect on glucose metabolism alteration induced by Hg


2018 ◽  
Vol 25 (1) ◽  
pp. 195
Author(s):  
Yong ZHOU ◽  
Yuheng SHI ◽  
Jianqing ZHAO ◽  
Jianli DAI ◽  
Yuding FAN ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 982
Author(s):  
Xiaoyan Peng ◽  
Rongguang Zhang ◽  
Chen Wang ◽  
Feiyan Yu ◽  
Mingyang Yu ◽  
...  

Current studies indicate that the anti-H. pylori protective efficacy of oral vaccines to a large extent depends on using mucosal adjuvants like E. coli heat-lable enterotoxin B unit (LtB). However, the mechanism by which Th17/Th1-driven cellular immunity kills H. pylori and the role of LtB remains unclear. Here, two L. lactis strains, expressing H. pylori NapA and LtB, respectively, were orally administrated to mice. As observed, the administration of LtB significantly enhanced the fecal SIgA level and decreased gastric H. pylori colonization, but also markedly aggravated gastric inflammatory injury. Both NapA group and NapA+LtB group had elevated splenocyte production of IL-8, IL-10, IL-12, IL-17, IL-23 and INF-γ. Notably, gastric leukocytes’ migration or leakage into the mucus was observed more frequently in NapA+LtB group than in NapA group. This report is the first that discusses how LtB enhances vaccine-induced anti-H. pylori efficacy by aggravating gastric injury and leukocytes’ movement into the mucus layer. Significantly, it brings up a novel explanation for the mechanism underlying mucosal cellular immunity destroying the non-invasive pathogens. More importantly, the findings suggest the necessity to further evaluate LtB’s potential hazards to humans before extending its applications. Thus, this report can provide considerable impact on the fields of mucosal immunology and vaccinology.


2021 ◽  
pp. 109386
Author(s):  
M.M. Kebeta ◽  
B.C. Hine ◽  
S.W. Walkden-Brown ◽  
L.P. Kahn ◽  
E.K. Doyle

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Rebecca L. Brocato ◽  
Steven A. Kwilas ◽  
Robert K. Kim ◽  
Xiankun Zeng ◽  
Lucia M. Principe ◽  
...  

AbstractA worldwide effort to counter the COVID-19 pandemic has resulted in hundreds of candidate vaccines moving through various stages of research and development, including several vaccines in phase 1, 2 and 3 clinical trials. A relatively small number of these vaccines have been evaluated in SARS-CoV-2 disease models, and fewer in a severe disease model. Here, a SARS-CoV-2 DNA targeting the spike protein and delivered by jet injection, nCoV-S(JET), elicited neutralizing antibodies in hamsters and was protective in both wild-type and transiently immunosuppressed hamster models. This study highlights the DNA vaccine, nCoV-S(JET), we developed has a great potential to move to next stage of preclinical studies, and it also demonstrates that the transiently-immunosuppressed Syrian hamsters, which recapitulate severe and prolonged COVID-19 disease, can be used for preclinical evaluation of the protective efficacy of spike-based COVID-19 vaccines.


Sign in / Sign up

Export Citation Format

Share Document