Peak Fat Oxidation is not Independently Related to Ironman Performance in Women

2018 ◽  
Vol 39 (12) ◽  
pp. 916-923 ◽  
Author(s):  
Stine Vest ◽  
Jacob Frandsen ◽  
Steen Larsen ◽  
Flemming Dela ◽  
Jørn Helge

AbstractThe aim of the present study was to investigate if peak fat oxidation rate (PFO) is related to Ironman performance in female athletes. Thirty-six female Ironman athletes (age: 34±1 yrs, [21–45 yrs.] SEM [Range]) with a BMI of 22.1±2.0 kg/m2 [18.8–28.4 kg/m2], a body fat percentage of 24.8±1.0% [9.0–37.0%] and a V̇O2peak of 53.0±1.3 ml/min/kg [36.5–70.5 ml/min/kg] were tested in the laboratory prior to the Ironman Copenhagen 2017. Race time ranged from 9:17:07 to 15:23:48 with mean race time being 11:57:26 h:min:s (717 min). By simple linear regression analyses we found associations between race time and P FO (r2=0.22, p<0.005), V̇O2peak (r2=0.65, p<0.0001) and the relative exercise intensity eliciting PFO (Fatmax) (r2=0.35, p=0.0001). Furthermore, associations were found between race time and body fat percentage (r2=0.44, p<0.0001) and age (r2=0.16, p<0.05). By means of multiple regression analysis, V̇O2peak was the only statistically significant variable explaining 64% of the variation in race time (adj. r2=0.64, p<0.005). In conclusion, these results demonstrate that PFO is not independently related to Ironman performance in a heterogeneous group of female athletes. Interestingly, V̇O2peak alone was able to predict 64% of the variation in Ironman race times.

2017 ◽  
Vol 38 (13) ◽  
pp. 975-982 ◽  
Author(s):  
Jacob Frandsen ◽  
Stine Vest ◽  
Steen Larsen ◽  
Flemming Dela ◽  
Jørn Helge

AbstractThe aim of the present study was to investigate the relationship between maximal fat oxidation rate (MFO) measured during a progressive exercise test on a cycle ergometer and ultra-endurance performance. 61 male ironman athletes (age: 35±1 yrs. [23–47 yrs.], with a BMI of 23.6±0.3 kg/m2 [20.0–30.1 kg/m2], a body fat percentage of 16.7±0.7% [8.4–30.7%] and a VO2peak of 58.7±0.7 ml/min/kg [43.9–72.5 ml/min/kg] SEM [Range]) were tested in the laboratory between 25 and 4 days prior to the ultra-endurance event, 2016 Ironman Copenhagen. Simple bivariate analyses revealed significant negative correlations between race time and MFO (r2=0.12, p<0.005) and VO2peak (r2=0.45, p<0.0001) and a positive correlation between race time and body fat percentage (r2=0.27, p<0.0001). MFO and VO2peak were not correlated. When the significant variables from the bivariate regression analyses were entered into the multiple regression models, VO2peak and MFO together explained 50% of the variation observed in race time among the 61 Ironman athletes (adj R2=0.50, p<0.001). These results suggests that maximal fat oxidation rate exert an independent influence on ultra-endurance performance (>9 h). Furthermore, we demonstrate that 50% of the variation in Ironman triathlon race time can be explained by peak oxygen uptake and maximal fat oxidation.


Author(s):  
Ignacio Martinez-Navarro ◽  
Antonio Montoya-Vieco ◽  
Eladio Collado ◽  
Bárbara Hernando ◽  
Carlos Hernando

AbstractThe study aimed to assess the relationship between peak oxygen uptake, ventilatory thresholds and maximal fat oxidation with ultra trail male and female performance. 47 athletes (29 men and 18 women) completed a cardiopulmonary exercise test between 2 to 4 weeks before a 107-km ultra trail. Body composition was also analyzed using a bioelectrical impedance weight scale. Exploratory correlation analyses showed that peak oxygen uptake (men: r=–0.63, p=0.004; women: r=–0.85, p < 0.001), peak speed (men: r=–0.74, p < 0.001; women: r=–0.69, p=0.009), speed at first (men: r=–0.49, p=0.035; women: r=–0.76, p=0.003) and second (men: r=–0.73, p < 0.001; women: r=–0.76, p=0.003) ventilatory threshold, and maximal fat oxidation (men: r=–0.53, p=0.019; women: r=–0.59, p=0.033) were linked to race time in male and female athletes. Percentage of fat mass (men: r=0.58, p=0.010; women: r=0.62, p= 0.024) and lean body mass (men: r=–0.61, p=0.006; women: r=–0.61, p=0.026) were also associated with performance in both sexes. Subsequent multiple regression analyses revealed that peak speed and maximal fat oxidation together were able to predict 66% of male performance; while peak oxygen uptake was the only statistically significant variable explaining 69% of the variation in women’s race time. These results, although exploratory in nature, suggest that ultra trail performance is differently predicted by endurance variables in men and women.


2009 ◽  
Vol 44 (2) ◽  
pp. 142-147 ◽  
Author(s):  
Jean-Claude Pineau ◽  
Jean Robert Filliard ◽  
Michel Bocquet

Abstract Context: For athletes in disciplines with weight categories, it is important to assess body composition and weight fluctuations. Objective: To evaluate the accuracy of measuring body fat percentage with a portable ultrasound device possessing high accuracy and reliability versus fan-beam, dual-energy X-ray absorptiometry (DEXA). Design: Cross-validation study. Setting: Research laboratory. Patients or Other Participants: A total of 93 athletes (24 women, 69 men), aged 23.5 ± 3.7 years, with body mass index  =  24.0 ± 4.2 and body fat percentage via DEXA  =  9.41 ± 8.1 participated. All participants were elite athletes selected from the Institut National des Sports et de l'Education Physique. These participants practiced a variety of weight-category sports. Main Outcome Measure(s): We measured body fat and body fat percentage using an ultrasound technique associated with anthropometric values and the DEXA reference technique. Cross-validation between the ultrasound technique and DEXA was then performed. Results: Ultrasound estimates of body fat percentage were correlated closely with those of DEXA in both females (r  =  0.97, standard error of the estimate  =  1.79) and males (r  =  0.98, standard error of the estimate  =  0.96). The ultrasound technique in both sexes had a low total error (0.93). The 95% limit of agreement was −0.06 ± 1.2 for all athletes and did not show an overprediction or underprediction bias. We developed a new model to produce body fat estimates with ultrasound and anthropometric dimensions. Conclusions: The limits of agreement with the ultrasound technique compared with DEXA measurements were very good. Consequently, the use of a portable ultrasound device produced accurate body fat and body fat percentage estimates in relation to the fan-beam DEXA technique.


2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 874
Author(s):  
Aindrea McHugh ◽  
Michael R. Esco ◽  
Henry N. Williford ◽  
Angela R. Russell

Author(s):  
Mariane Borges ◽  
Anselmo Athayde Costa e Silva ◽  
Fernando Rosch de Faria ◽  
Priscila Samora Godoy ◽  
Ellen Rodrigues Barbosa Melo ◽  
...  

DOI: http://dx.doi.org/10.5007/1980-0037.2017v19n2p204 The aim of this study was to verify the relationship between body composition and motor performance in Wheelchair Handball players (WH). Overall, 21 athletes composed the sample (13 males and 8 females). To analyze motor performance, the following tests were used: ball driving, block performance, 20 m velocity and zigzag agility for individuals on wheelchair. Body mass, height, body perimeter and skinfold thickness (tricipital, subescapular, bicipital and supra-iliac) were used to establish body composition profile. Data was presented through descriptive statistics and inference was performed by Spearmans’ and Kruskal-Wallis correlation coefficient (non-parametric). Therefore, strong and significant correlations between body composition and motor performance were detected within different functional class and also according to sex, whereas male athletes showed significant correlation between body fat percentage and agility (r=0.70, p≤0.01) and, in the case of female athletes, body fat percentage is strongly related with speed (r=0.81, p≤0.01) and agility (r=0.74, p≤0.05). As conclusion, it was verified that apparently, increased body fat in body composition profile negatively influences motor performance in wheelchair handball players.


Author(s):  
Erica Roelofs ◽  
April Bockin ◽  
Tyler Bosch ◽  
Jonathan Oliver ◽  
Christopher W. Bach ◽  
...  

AbstractThe purpose of this study was to examine body composition of National Collegiate Athletic Association Division I female soccer players by position and season. One hundred seventy-five female athletes were categorized by positions of forward (n=47), midfielder (n=51), defender (n=57), and goalkeeper (n=20). A dual X-ray absorptiometry scan assessed percent body fat, total lean mass, total fat mass, arm and leg lean mass and fat mass, and visceral adipose tissue. Goalkeepers had significantly higher total, arm, and leg lean mass and fat mass compared to all other positions (p<0.05). For seasonal changes, body fat percentage was significantly higher in winter off-season (26.7%) compared to summer off-season (25.7%) and pre-season (25.8%; p<0.01) for all positions. Total and leg lean mass was significantly lower in winter off-season compared to all other seasons, and total lean mass was significantly higher in summer off-season than pre-season (p<0.01). Overall, goalkeepers were significantly different than all other positions. Body fat percentage increased and lean mass decreased in winter off-season indicating potential undesired changes in training and/or nutrition over the break whereas lean mass was the highest in summer off-season potentially reflecting the emphasis on resistance training and increased volume of training.


Sign in / Sign up

Export Citation Format

Share Document