scholarly journals Ultra Trail Performance is Differently Predicted by Endurance Variables in Men and Women

Author(s):  
Ignacio Martinez-Navarro ◽  
Antonio Montoya-Vieco ◽  
Eladio Collado ◽  
Bárbara Hernando ◽  
Carlos Hernando

AbstractThe study aimed to assess the relationship between peak oxygen uptake, ventilatory thresholds and maximal fat oxidation with ultra trail male and female performance. 47 athletes (29 men and 18 women) completed a cardiopulmonary exercise test between 2 to 4 weeks before a 107-km ultra trail. Body composition was also analyzed using a bioelectrical impedance weight scale. Exploratory correlation analyses showed that peak oxygen uptake (men: r=–0.63, p=0.004; women: r=–0.85, p < 0.001), peak speed (men: r=–0.74, p < 0.001; women: r=–0.69, p=0.009), speed at first (men: r=–0.49, p=0.035; women: r=–0.76, p=0.003) and second (men: r=–0.73, p < 0.001; women: r=–0.76, p=0.003) ventilatory threshold, and maximal fat oxidation (men: r=–0.53, p=0.019; women: r=–0.59, p=0.033) were linked to race time in male and female athletes. Percentage of fat mass (men: r=0.58, p=0.010; women: r=0.62, p= 0.024) and lean body mass (men: r=–0.61, p=0.006; women: r=–0.61, p=0.026) were also associated with performance in both sexes. Subsequent multiple regression analyses revealed that peak speed and maximal fat oxidation together were able to predict 66% of male performance; while peak oxygen uptake was the only statistically significant variable explaining 69% of the variation in women’s race time. These results, although exploratory in nature, suggest that ultra trail performance is differently predicted by endurance variables in men and women.

2018 ◽  
Vol 39 (12) ◽  
pp. 916-923 ◽  
Author(s):  
Stine Vest ◽  
Jacob Frandsen ◽  
Steen Larsen ◽  
Flemming Dela ◽  
Jørn Helge

AbstractThe aim of the present study was to investigate if peak fat oxidation rate (PFO) is related to Ironman performance in female athletes. Thirty-six female Ironman athletes (age: 34±1 yrs, [21–45 yrs.] SEM [Range]) with a BMI of 22.1±2.0 kg/m2 [18.8–28.4 kg/m2], a body fat percentage of 24.8±1.0% [9.0–37.0%] and a V̇O2peak of 53.0±1.3 ml/min/kg [36.5–70.5 ml/min/kg] were tested in the laboratory prior to the Ironman Copenhagen 2017. Race time ranged from 9:17:07 to 15:23:48 with mean race time being 11:57:26 h:min:s (717 min). By simple linear regression analyses we found associations between race time and P FO (r2=0.22, p<0.005), V̇O2peak (r2=0.65, p<0.0001) and the relative exercise intensity eliciting PFO (Fatmax) (r2=0.35, p=0.0001). Furthermore, associations were found between race time and body fat percentage (r2=0.44, p<0.0001) and age (r2=0.16, p<0.05). By means of multiple regression analysis, V̇O2peak was the only statistically significant variable explaining 64% of the variation in race time (adj. r2=0.64, p<0.005). In conclusion, these results demonstrate that PFO is not independently related to Ironman performance in a heterogeneous group of female athletes. Interestingly, V̇O2peak alone was able to predict 64% of the variation in Ironman race times.


2011 ◽  
Vol 111 (9) ◽  
pp. 2063-2068 ◽  
Author(s):  
Corey A. Rynders ◽  
Siddhartha S. Angadi ◽  
Nathan Y. Weltman ◽  
Glenn A. Gaesser ◽  
Arthur Weltman

Author(s):  
Angelo Cataldo ◽  
Giuseppe Russo ◽  
Dario Cerasola ◽  
Danila Di Majo ◽  
Marco Giammanco ◽  
...  

The contribution of fat oxidation to energy production during exercise is influenced by intensity of exercise. The aim of this study was to assess the relationship between the highest value of fat oxidation rate (FATmax) and the oxygen uptake (VO2) in sedentary type 2 diabetes (T2D) patients vs healthy sedentary subjects. Sedentary T2D patients and healthy sedentary subjects were evaluated to a graded exercise test, and oxygen uptake and fat oxidation rate were detected. Data show that in T2D patients fat oxidation rate is not impaired and the positive linear correlation between FATmax and both VO2 and VO2max suggests that even in T2D patients the muscle oxidative capacity might increase in response to aerobic training.


2011 ◽  
Vol 36 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Xavier Chenevière ◽  
Fabio Borrani ◽  
David Sangsue ◽  
Boris Gojanovic ◽  
Davide Malatesta

Discrepancies appear in studies comparing fat oxidation between men and women. Therefore, this study aimed to quantitatively describe and compare whole-body fat oxidation kinetics between genders during exercise, using a sinusoidal (SIN) model. Twelve men and 11 women matched for age, body mass index, and aerobic fitness (maximal oxygen uptake and maximal power output per kilogram of fat-free mass (FFM)) performed submaximal incremental tests (Incr) with 5-min stages and a 7.5% maximal power output increment on a cycle ergometer. Fat oxidation rates were determined using indirect calorimetry, and plotted as a function of exercise intensity. The SIN model, which includes 3 independent variables (dilatation, symmetry, translation) that account for the main quantitative characteristics of kinetics, was used to mathematically describe fat oxidation kinetics and to determine the intensity (Fatmax) eliciting the maximal fat oxidation (MFO). During Incr, women exhibited greater fat oxidation rates from 35% to 85% maximal oxygen uptake, MFO (6.6 ± 0.9 vs. 4.5 ± 0.3 mg·kg FFM−1·min−1), and Fatmax (58.1% ± 1.9% vs. 50.0% ± 2.7% maximal oxygen uptake) than men (p < 0.05). While men and women showed similar global shapes of fat oxidation kinetics in terms of dilatation and symmetry (p > 0.05), the fat oxidation curve tended to be shifted toward higher exercise intensities in women (rightward translation, p = 0.08). These results support the idea that women have a greater reliance on fat oxidation than men during submaximal exercise, but also indicate that this greater fat oxidation is shifted toward higher exercise intensities in women than in men.


2021 ◽  
Vol 80 (1) ◽  
pp. 163-172
Author(s):  
Kamil Michalik ◽  
Natalia Danek ◽  
Marek Zatoń

Abstract The incremental exercise test is the most common method in assessing the maximal fat oxidation (MFO) rate. The main aim of the study was to determine whether the progressive linear RAMP test can be used to assess the maximal fat oxidation rate along with the intensities that trigger its maximal (FATmax) and its minimal (FATmin) values. Our study comprised 57 young road cyclists who were tested in random order. Each of them was submitted to two incremental exercise tests on an electro-magnetically braked cycle-ergometer - STEP (50 W·3 min-1) and RAMP (~0.278 W·s-1) at a 7-day interval. A stoichiometric equation was used to calculate the fat oxidation rate, while the metabolic thresholds were defined by analyzing ventilation gases. The Student’s T-test, Bland-Altman plots and Pearson’s linear correlations were resorted to in the process of statistical analysis. No statistically significant MFO variances occurred between the tests (p = 0.12) and its rate amounted to 0.57 ± 0.15 g·min-1 and 0.53 ± 0.17 g·min-1 in the STEP and RAMP, respectively. No statistically significant variances in the absolute and relative (to maximal) values of oxygen uptake and heart rate were discerned at the FATmax and FATmin intensities. The RAMP test displayed very strong oxygen uptake correlations between the aerobic threshold and FATmax (r = 0.93, R2 = 0.87, p < 0.001) as well as the anaerobic threshold and FATmin (r = 0.88, R2 = 0.78, p < 0.001). Our results corroborate our hypothesis that the incremental RAMP test as well as the STEP test are reliable tools in assessing MFO, FATmax and FATmin intensities.


2017 ◽  
Vol 38 (13) ◽  
pp. 975-982 ◽  
Author(s):  
Jacob Frandsen ◽  
Stine Vest ◽  
Steen Larsen ◽  
Flemming Dela ◽  
Jørn Helge

AbstractThe aim of the present study was to investigate the relationship between maximal fat oxidation rate (MFO) measured during a progressive exercise test on a cycle ergometer and ultra-endurance performance. 61 male ironman athletes (age: 35±1 yrs. [23–47 yrs.], with a BMI of 23.6±0.3 kg/m2 [20.0–30.1 kg/m2], a body fat percentage of 16.7±0.7% [8.4–30.7%] and a VO2peak of 58.7±0.7 ml/min/kg [43.9–72.5 ml/min/kg] SEM [Range]) were tested in the laboratory between 25 and 4 days prior to the ultra-endurance event, 2016 Ironman Copenhagen. Simple bivariate analyses revealed significant negative correlations between race time and MFO (r2=0.12, p<0.005) and VO2peak (r2=0.45, p<0.0001) and a positive correlation between race time and body fat percentage (r2=0.27, p<0.0001). MFO and VO2peak were not correlated. When the significant variables from the bivariate regression analyses were entered into the multiple regression models, VO2peak and MFO together explained 50% of the variation observed in race time among the 61 Ironman athletes (adj R2=0.50, p<0.001). These results suggests that maximal fat oxidation rate exert an independent influence on ultra-endurance performance (>9 h). Furthermore, we demonstrate that 50% of the variation in Ironman triathlon race time can be explained by peak oxygen uptake and maximal fat oxidation.


1997 ◽  
Vol 5 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Barbara E. Ainsworth ◽  
Robert G. McMurray ◽  
Susan K. Veazey

The purpose of this study was to determine the accuracy of two submaximal exercise tests, the Sitting-Chair Step Test (Smith & Gilligan. 1983) and the Modified Step Test (Amundsen, DeVahl, & Ellingham, 1989) to predict peak oxygen uptake (VO2 peak) in 28 adults ages 60 to 85 years. VO2 peak was measured by indirect calorimetry during a treadmill maximal graded exercise test (VO2 peak, range 11.6–31.1 ml · kg −l · min−1). In each of the submaximal tests, VO2 was predicted by plotting stage-by-stage submaximal heart rate (HR) and perceived exertion (RPE) data against VO2 for each stage and extrapolating the data to respective age-predicted maximal HR or RPE values. In the Sitting-Chair Step Test (n = 23), no significant differences were observed between measured and predicted VO2 peak values (p > .05). However, predicted VO2 peak values from the HR were 4.3 ml · kg−1 · min−1 higher than VO2 peak values predicted from the RPE data (p < .05). In the Modified Step Test (n = 22), no significant differences were observed between measured and predicted VO2 peak values (p > .05). Predictive accuracy was modest, explaining 49–78% of the variance in VO2 peak. These data suggest that the Sitting-Chair Step Test and the Modified Step Test have moderate validity in predicting VO2 peak in older men and women.


1997 ◽  
Vol 85 (2) ◽  
pp. 547-550 ◽  
Author(s):  
Darhl M. Pedersen

Profiles of personality traits for male and female athletes were obtained from 133 men and 71 women raters. Traits were rated using a 7-point semantic differential with 11 bipolar items. A profile analysis showed that the profiles of the traits were distinct. There were no significant differences in the ratings by men and women raters. Male athletes were rated as more active, aggressive, competitive, dominating, controlling, instrumental, and public. Female athletes were rated as more goal-oriented, organized, and rule-governed.


2010 ◽  
Vol 35 (6) ◽  
pp. 741-748 ◽  
Author(s):  
Juan Del Coso ◽  
Nassim Hamouti ◽  
Juan Fernando Ortega ◽  
Ricardo Mora-Rodriguez

The purpose of this study was to determine whole-body fat oxidation in endurance-trained (TR) and untrained (UNTR) subjects exercising at different intensities in the heat. On 3 occasions, 10 TR cyclists and 10 UNTR healthy subjects (peak oxygen uptake = 60 ± 6 vs. 44 ± 3 mL·kg–1·min–1; p < 0.05) exercised at 40%, 60%, and 80% peak oxygen uptake in a hot, dry environment (36 °C; 25% relative humidity). To complete the same amount of work in all 3 trials, exercise duration varied (107 ± 4, 63 ± 1, and 45 ± 0 min for 40%, 60%, and 80% peak oxygen uptake, respectively). Substrate oxidation was calculated using indirect calorimetry. Blood samples were collected at the end of exercise to determine plasma epinephrine ([EPI]plasma) and norepinephrine ([NEPI]plasma) concentrations. The maximal rate of fat oxidation was achieved at 60% peak oxygen uptake for the TR group (0.41 ± 0.01 g·min–1) and at 40% peak oxygen uptake for the UNTR group (0.28 ± 0.01 g·min–1). TR subjects oxidized absolutely (g·min–1) and relatively (% of total energy expenditure) more fat than UNTR subjects at 60% and 80% peak oxygen uptake (p < 0.05). At these exercise intensities, TR subjects also had higher [NEPI]plasma concentrations than UNTR subjects (p < 0.05). In the heat, whole-body peak fat oxidation occurs at higher relative exercise intensities in TR than in UNTR subjects (60% vs. 40% peak oxygen uptake). Moreover, TR subjects oxidize more fat than UNTR subjects when exercising at moderate to high intensities (>60% peak oxygen uptake).


BMJ Open ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. e018697 ◽  
Author(s):  
Daniel Rapp ◽  
Jürgen Scharhag ◽  
Stefan Wagenpfeil ◽  
Johannes Scholl

ObjectiveThis study aims to construct quantile reference values for peak oxygen uptake (V̇O2peak) measured by cycle ergometry-based incremental cardiopulmonary exercise tests.DesignCross-sectional study using quantile regressions to fit sex-specific and age-specific quantile curves. Exercise tests were conducted using cycle ergometry. Maximal effort in the exercise tests was assumed when respiratory exchange ratio  ≥1.1 or lactate ≥8 mmol/L or maximal heart rate ≥90% of the age-predicted maximal heart rate. This was assessed retrospectively for a random subsample with an a priori calculated sample size of n=252 participants.SettingA network of private outpatient clinics in three German cities recorded the results of cycle ergometry-based cardiopulmonary exercise tests to a central database (Prevention First Registry) from 2001 to 2015.Participants10 090 participants (6462 men, 3628 women) from more than 100 local companies volunteered in workplace health promotion programmes. Participants were aged 21 to 83 years, were free of acute complaints and had primarily sedentary working environments.Main outcome measurePeak oxygen uptake was measured as absolute V̇O2peakin litres of oxygen per minute and relative V̇O2peakin millilitres of oxygen per kilogram of body mass per minute.ResultsThe mean age for both men and women was 46 years. Median relative V̇O2peakwas 36 and 30 mL/kg/min at 40 to 49 years, as well as 32 and 26 mL/kg/min at 50 to 59 years for men and women, respectively. An estimated proportion of 97% of the participants performed the exercise test until exertion.ConclusionsReference values and nomograms for V̇O2peakwere derived from a large sample of preventive healthcare examinations of healthy white-collar workers. The presented results can be applied to participants of exercise tests using cycle ergometry who are part of a population that is comparable to this study.


Sign in / Sign up

Export Citation Format

Share Document