Intraoperative Computed Tomography in Orthopaedic Trauma Surgery

Author(s):  
Holger Keil ◽  
Sven Y. Vetter ◽  
Paul Alfred Grützner ◽  
Jochen Franke

Abstract Background When using mobile 3D C-arms, impairments in image quality occur due to artefacts caused by metal implants as well as to the limited field of view. To avoid these restrictions, special computed tomography devices were designed, in order to improve image quality and to meet requirements for intraoperative usage. Objectives To analyse practicability and benefits of a mobile intraoperative CT device (Airo, Brainlab, Munich, Germany) on the basis of several parameters that were obtained during a 40-month period. Materials and Methods All procedures that were performed with usage of intraoperative CT between January 2017 and April 2020 were analysed with respect to anatomical region, count of scans, duration of scans, consequences drawn from the scans and use of navigation. Results 354 CT-scans were performed in 171 patients (mean 2.07 [1 – 6] scans per procedure). 47.81% of the procedures were spinal, 52.19% affected the pelvis. 83% of the procedures were navigated. In 22% of patients, improvement in implant placement or reduction was achieved; in most patients (55%), a guidewire for pedicle screws was corrected. The mean scan duration was 10.33 s (3.54 – 21.72). Conclusions Use of intraoperative CT was reliable and helpful. Integration in OR standards requires more effort than mobile 3D C-arms. Image quality was outstanding for intraoperative conditions and allowed proper assessment of implant placement and reduction in all cases. Due to the high financial outlay of the system and the good image quality of 3D C-arms in the extremities, we assume that this procedure can be applied in intraoperative CT in traumatological cases in spinal and pelvic surgery in high-level trauma centres.

2021 ◽  
Vol 11 (5) ◽  
pp. 646
Author(s):  
Mirza Pojskić ◽  
Miriam Bopp ◽  
Benjamin Saß ◽  
Andreas Kirschbaum ◽  
Christopher Nimsky ◽  
...  

Background. Lateral approaches to the spine have gained increased popularity due to enabling minimally invasive access to the spine, less blood loss, decreased operative time, and less postoperative pain. The objective of the study was to analyze the use of intraoperative computed tomography with navigation and the implementation of augmented reality in facilitating a lateral approach to the spine. Methods. We prospectively analyzed all patients who underwent surgery with a lateral approach to the spine from September 2016 to January 2021 using intraoperative CT applying a 32-slice movable CT scanner, which was used for automatic navigation registration. Sixteen patients, with a median age of 64.3 years, were operated on using a lateral approach to the thoracic and lumbar spine and using intraoperative CT with navigation. Indications included a herniated disc (six patients), tumors (seven), instability following the fracture of the thoracic or lumbar vertebra (two), and spondylodiscitis (one). Results. Automatic registration, applying intraoperative CT, resulted in high accuracy (target registration error: 0.84 ± 0.10 mm). The effective radiation dose of the registration CT scans was 6.16 ± 3.91 mSv. In seven patients, a control iCT scan was performed for resection and implant control, with an ED of 4.51 ± 2.48 mSv. Augmented reality (AR) was used to support surgery in 11 cases, by visualizing the tumor outline, pedicle screws, herniated discs, and surrounding structures. Of the 16 patients, corpectomy was performed in six patients with the implantation of an expandable cage, and one patient underwent discectomy using the XLIF technique. One patient experienced perioperative complications. One patient died in the early postoperative course due to severe cardiorespiratory failure. Ten patients had improved and five had unchanged neurological status at the 3-month follow up. Conclusions. Intraoperative computed tomography with navigation facilitates the application of lateral approaches to the spine for a variety of indications, including fusion procedures, tumor resection, and herniated disc surgery.


2014 ◽  
Vol 7 (6) ◽  
pp. 515-521 ◽  
Author(s):  
Andrew R. Hsu ◽  
Simon Lee

Stress fractures of the tarsal navicular are high-risk injuries that can result in displacement, avascular necrosis, malunion, and nonunion. Delayed diagnosis and improper treatment can lead to long-term functional impairments and poor clinical outcomes. Increased shear stress and decreased vascularity in the central third of the navicular can complicate bony healing with often unpredictable return times to activity using conservative management in a non-weight-bearing cast. There recently has been increasing debate regarding the effectiveness of treatment options with a trend toward surgical management to anatomically reduce and stabilize navicular stress fractures in athletes. However, anatomic reduction and fixation of the navicular can be difficult despite direct visualization and intraoperative fluoroscopy. We report a case of a chronic navicular stress fracture in a high-level teenage athlete treated with open reduction internal fixation (ORIF) and calcaneus autograft using intraoperative computed tomography (CT) (O-arm®, Medtronic, Minneapolis, MN) for real-time evaluation of fracture reduction and fixation. Intraoperative CT was fast, reliable, and allowed for confirmation of guide wire orientation, alignment, and length across the fracture site. Anatomic fixation of navicular stress fractures can be challenging, and it is important for surgeons to be aware of the potential advantages of using intraoperative CT when treating these injuries. Levels of Evidence: Therapeutic, Level IV: Case Report


Neurosurgery ◽  
2011 ◽  
Vol 69 (4) ◽  
pp. 782-795 ◽  
Author(s):  
Kai-Michael Scheufler ◽  
Joerg Franke ◽  
Anke Eckardt ◽  
Hildegard Dohmen

Abstract BACKGROUND: Image-guided spinal instrumentation reduces the incidence of implant misplacement. OBJECTIVE: To assess the accuracy of intraoperative computed tomography (iCT)-based neuronavigation (iCT-N). METHODS: In 35 patients (age range, 18-87 years), a total of 248 pedicle screws were placed in the cervical (C1-C7) and upper and midthoracic (T1-T8) spine. An automated iCT registration sequence was used for multisegmental instrumentation, with the reference frame fixed to either a Mayfield head clamp and/or the most distal spinous process within the instrumentation. Pediculation was performed with navigated drill guides or Jamshidi cannulas. The angular deviation between navigated tool trajectory and final implant positions (evaluated on postinstrumentation iCT or postoperative CT scans) was calculated to assess the accuracy of iCT-N. Final screw positions were also graded according to established classification systems. Mean follow-up was 16.7 months. RESULTS: Clinically significant screw misplacement or iCT-N failure mandating conversion to conventional technique did not occur. A total of 71.4% of patients self-rated their outcome as excellent or good at 12 months; 99.3% of cervical screws were compliant with Neo classification grades 0 and 1 (grade 2, 0.7%), and neurovascular injury did not occur. In addition, 97.8% of thoracic pedicle screws were assigned grades I to III of the Heary classification, with 2.2% grade IV placement. Accuracy of iCT-N progressively deteriorated with increasing distance from the spinal reference clamp but allowed safe instrumentation of up to 10 segments. CONCLUSION: Image-guided spinal instrumentation using iCT-N with automated referencing allows safe, highly accurate multilevel instrumentation of the cervical and upper and midthoracic spine. In addition, iCT-N significantly reduces the need for reregistration in multilevel surgery.


2018 ◽  
Vol 184 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Nadine Helena Pelegrino Bastos Maués ◽  
Allan Felipe Fattori Alves ◽  
Ana Luiza Menegatti Pavan ◽  
Sergio Marrone Ribeiro ◽  
Seizo Yamashita ◽  
...  

Abstract Computed tomography (CT) has a high level of sensitivity and specificity for the diagnosis and follow-up of pathologies of the abdomen–pelvis region. Some features, such as automatic tube current modulation (ATCM), permits the acquisition of quality images with low radiation doses. This study evaluated the image quality and radiation dose of abdomen–pelvis CT protocols with ATCM technique. Were performed five CT protocols using 16-slice and 64-slice scanners, an anthropomorphic phantom for dosimetric measurements, an analytical phantom and retrospective examinations for image quality analysis. Were found significant reduction in effective dose. The highest absorbed doses were found in the stomach and spleen (56.1 and 47.2 mGy, respectively). Objective parameters as noise, low contrast and spatial resolution did not significantly differ between the protocols (p > 0.05). All protocols received the range of ‘Optimum/Acceptable’ in patient’s image quality analysis. This methodology can be reproduced in any clinical routine to optimize CT protocols.


2013 ◽  
Vol 3 (2) ◽  
pp. 103-107 ◽  
Author(s):  
Jason C. Eck ◽  
Jeffrey Lange ◽  
John Street ◽  
Anthony Lapinsky ◽  
Christian P. DiPaola

2008 ◽  
Vol 22 (6) ◽  
pp. 635-641 ◽  
Author(s):  
Sarah K. Wise ◽  
Richard J. Harvey ◽  
John C. Goddard ◽  
Patrick O. Sheahan ◽  
Rodney J. Schlosser

Background The utility of image guidance (image-guided surgery [IGS]) and intraoperative computed tomography (CT) scanning as a tool for less experienced endoscopic surgeons to aid in localization of paranasal sinus and skull base anatomic structures was evaluated. Methods Partial endoscopic dissection was performed on cadaver specimens by three fellowship trained rhinologists. Anatomic sites within and around the sinuses were tagged with radio-opaque markers. Otolaryngology residents identified tagged anatomic sites using four successive levels of technology: endoscopy alone (simulating outpatient clinic), endoscopy plus preoperative CT (simulating endoscopic sinus surgery [ESS] without IGS), endoscopy plus IGS registered to preoperative CT (simulating current ESS with IGS), and endoscopy plus IGS registered to real-time intraoperative CT. Responses were graded as follows: consensus rhinologist answer (4 points), close answer without clinically significant difference (3 points), within anatomic region but definite clinical difference (2 points), outside of anatomic region (1 point), no answer (0 points). Results Eleven residents participated. Of 20 specific anatomic sites, IGS-intraoperative CT provided the most accurate anatomic identification at 16 sites. For 8 sites, IGS-intraoperative CT had a significantly higher score than endoscopy alone (p < 0.05; eta2 = 0.29-0.67). For 6 sites, IGS-preoperative CT scan had a significantly higher score than endoscopy alone (p < 0.05; eta2 = 0.30-0.67). All participants found that IGS-intraoperative CT scan made them most comfortable in identifying anatomy. Conclusion Combined IGS and intraoperative CT scan technology may be an instructional adjunct for less experienced paranasal sinus surgeons for dissection and evaluation of unfamiliar or distorted anatomy.


2021 ◽  
Author(s):  
GENTARO KUMAGAI ◽  
Kanichiro Wada ◽  
Sunao Tanaka ◽  
Toru Asari ◽  
Yohshiro Nitobe ◽  
...  

Abstract Purpose: Although the use of intraoperative computed tomography (CT)-based navigation systems is unlikely to cause intraoperative contamination more than the use of intraoperative fluoroscopy, the association between intraoperative CT/navigation and surgical site infections (SSIs) remains unclear. We investigated the incidence of SSIs and the association between intraoperative CT/navigation and SSIs for spinal surgeries.Methods: Of the 512 patients who underwent spinal surgery between April 2016 and December 2020, 304 underwent C-arm intraoperative fluoroscopy and/or Medtronic O-arm intraoperative CT/navigation system. We investigated the incidence of SSIs in patients with four techniques; no intraoperative imaging C-arm only, O-arm only, and both O- and C-arm used. Multivariate logistic analyses were conducted using the prevalence of SSIs as the dependent variable. The independent variables were age, sex, and potential confounders including preoperative Japanese Orthopaedic Association (JOA) score, use of instrumentation, C-arm and/or O-arm. Results: The incidence of the SSIs in patients with no imaging, C-arm only, O-arm only, and both modalities used was 1.9%, 7.3%, 4.7%, and 8.3%, respectively. There was no significant difference in the incidence of SSIs between the four techniques. Multivariate logistic analyses showed a significant correlation between the prevalence of SSI and JOA scores (odds ratio, 0.878; 95%CI, 0.759-0.990) and use of instrumentation (odds ratio, 6.241; 95%CI, 1.113-34.985), but not use of O-arm.Conclusions: The incidence of the SSIs in patients with only O-arm used was 4.7%. Preoperative clinical status and use of instrumentation, but not use of the O-arm, was associated with SSIs after spinal surgeries.


2016 ◽  
Vol 13 (2) ◽  
pp. 188-195 ◽  
Author(s):  
Francesco Costa ◽  
Alessandro Ortolina ◽  
Andrea Cardia ◽  
Marco Riva ◽  
Martina Revay ◽  
...  

Abstract BACKGROUND: Image-guided surgery techniques in spinal surgery are usually based upon fluoroscopy or computed tomography (CT) scan, which allow for a real-time navigation of bony structures, though not of neural structures and soft tissue remains. OBJECTIVE: To verify the effectiveness and efficacy of a novel technique of imaging merging between preoperative magnetic resonance imaging (MRI) and intraoperative CT scan during removal of intramedullary lesions. METHODS: Ten consecutive patients were treated for intramedullary lesions using a navigation system aid. Preoperative contrast-enhanced MRI was merged in the navigation software, with an intraoperative CT acquisition, performed using the O-armTM system (Medtronic Sofamor Danek, Minneapolis, Minnesota). Dosimetric and timing data were also acquired for each patient. RESULTS: The fusion process was achieved in all cases and was uneventful. The merged imaging information was useful in all cases for defining the exact area of laminectomy, dural opening, and the eventual extension of cordotomy, without requiring exposition corrections. The radiation dose for the patients was 0.78 mSv. Using the authors’ protocol, it was possible to merge a preoperative MRI with navigation based on intraoperative CT scanning in all cases. Information gained with this technique was useful during the different surgical steps. However, there were some drawbacks, such as the merging process, which still remains partially manual. CONCLUSION: In this initial experience, MRI and CT merging and its feasibility were tested, and we appreciated its safety, precision, and ease.


Sign in / Sign up

Export Citation Format

Share Document