Towards the sustainable and continuous in-vitro production of active pharmaceutical ingredients from medicinal plants

Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
F Michoux ◽  
PJ Nixon
2019 ◽  
Vol 37 (2) ◽  
pp. 124-132 ◽  
Author(s):  
Jean Carlos Cardoso ◽  
Maria Eduarda BS de Oliveira ◽  
Fernanda de CI Cardoso

ABSTRACT The production of secondary metabolites from medicinal plants, also called Plant-Derived Medicinal Compounds (PDMC), is gaining ground in the last decade. Concomitant to the increase in the knowledge about pharmacological properties of these compounds, horticultural plants are becoming the most important, sustainable and low-cost biomass source to obtain high-complex PDMCs to be used as medicaments. Biotechnological tools, including plant cell and tissue culture and plant genetic transformation, are increasingly being employed to produce high quality and rare PDMC under in vitro conditions. The proper use of these technologies requires studies in organogenesis to allow for better control of in vitro plant development and, thus, to the production of specific tissues and activation of biochemical routes that result in the biosynthesis of the target PDMCs. Either biotic or abiotic factors, called elicitors, are responsible for triggering the PDMC synthesis. In vitro techniques, when compared to the conventional cultivation of medicinal plants in greenhouse or in the field, have the advantages of (1) producing PDMCs in sterile and controlled environmental conditions, allowing better control of the developmental processes, such as organogenesis, and (2) producing tissues with high PDMC contents, due to the efficient use of different biotic and abiotic elicitors. Nevertheless, the process has many challenges, e.g., the establishment of step-by-step protocols for in vitro biomass and PDMC production, both involving and being affected by many factors. Other limitations are the high costs in opposition to the relatively cheaper alternative of growing medicinal plants conventionally. This paper aims to quickly review the general origin of plant secondary metabolites, the leading techniques and recent advances for PDMC in vitro production, and the challenges around the use of this promising technology.


2021 ◽  
Author(s):  
Aanchal Bansal ◽  
Chinmayee Priyadarsini

Phytochemicals are produced by plants as a defence mechanism against pathogens. They are used to treat various metabolic, immunological and neurological disorders in humans in various parts of the world as a part of traditional medicine. The use of indigenous plants in commercial medicine is rising with increasing population. The antimicrobial properties of plant extracts led to increased demands. Plant tissue culture on the other hand, has proved to be a reliable alternative for the production of bioactive compounds from plants. Artificial plant culture can enhance the production of phytochemicals in medicinal plants. This review focuses on the medicinal properties of phytochemicals and their in-vitro production.


1964 ◽  
Vol 47 (2) ◽  
pp. 306-313 ◽  
Author(s):  
Denis Gospodarowicz

ABSTRACT Incubation in vitro of rabbit follicles in separate experiments with dehydroepiandrosterone-14C (DHEA-14C), progesterone-14C and pregnenolone-3H in the presence of FSH gave the following results: 39 % of the radioactivity of DHEA-14C is converted to androstenedione and testosterone, while only 3 % of the radioactivity of either progesterone-14C or pregnenolone-3H is found in the androgen fraction. From the ratio of testosterone to androstenedione formed from the three precursors, the results are interpreted to mean that DHEA and pregnenolone, and not progesterone, are precursors of androgens in the follicle.


1984 ◽  
Vol 107 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Itaru Kojima ◽  
Etsuro Ogata ◽  
Hiroshi Inano ◽  
Bun-ichi Tamaoki

Abstract. Incubation of 18-hydroxycorticosterone with the sonicated mitochondrial preparation of bovine adrenal glomerulosa tissue leads to the production of aldosterone, as measured by radioimmunoassay. The in vitro production of aldosterone from 18-hydroxycorticosterone requires both molecular oxygen and NADPH, and is inhibited by carbon monoxide. Cytochrome P-450 inhibitors such as metyrapone, SU 8000. SU 10603, SKF 525A, amphenone B and spironolactone decrease the biosynthesis of aldosterone from 18-hydroxycorticosterone. These results support the conclusion that the final reaction in aldosterone synthesis from 18-hydroxycorticosterone is catalyzed by an oxygenase, but not by 18-hydroxysteroid dehydrogenase. By the same preparation, the production of [3H]aldosterone but not [3H]18-hydroxycorticosterone from [1,2-3H ]corticosterone is decreased in a dose-dependent manner by addition of non-radioactive 18-hydroxycorticosterone.


Sign in / Sign up

Export Citation Format

Share Document