scholarly journals Cell Phenotype and Matrix Regeneration of Human Nucleus Pulposus Cells of Different Ages in a Laminin-Rich Pseudo-3D Culture System in Vitro

2014 ◽  
Vol 4 (1_suppl) ◽  
pp. s-0034-1376648-s-0034-1376648
Author(s):  
X. Tang ◽  
L. Jing ◽  
L. A. Setton ◽  
W. J. Richardson ◽  
R. D. Fitch ◽  
...  
Reproduction ◽  
2011 ◽  
Vol 141 (6) ◽  
pp. 809-820 ◽  
Author(s):  
Candace M Tingen ◽  
Sarah E Kiesewetter ◽  
Jennifer Jozefik ◽  
Cristina Thomas ◽  
David Tagler ◽  
...  

Innovations in in vitro ovarian follicle culture have revolutionized the field of fertility preservation, but the successful culturing of isolated primary and small secondary follicles remains difficult. Herein, we describe a revised 3D culture system that uses a feeder layer of ovarian stromal cells to support early follicle development. This culture system allows significantly improved primary and early secondary follicle growth and survival. The stromal cells, consisting mostly of thecal cells and ovarian macrophages, recapitulate the in vivo conditions of these small follicles and increase the production of androgens and cytokines missing from stromal cell-free culture conditions. These results demonstrate that small follicles have a stage-specific reliance on the ovarian environment, and that growth and survival can be improved in vitro through a milieu created by pre-pubertal ovarian stromal cell co-culture.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4114-4114
Author(s):  
Li Hou ◽  
Ting Liu ◽  
Jing Tan ◽  
Wentong Meng ◽  
Li Deng

Abstract We have constructed a biomimetic hematopoietic niche (3D culture system) with bio-derived bone as framework, composited with human marrow mesenchymal stem cells, and induced the cells into osteoblasts. Our primary results showed that the biomimetic 3D culture system is capable to allow maintenance and expansion of primitive hematopoietic progenitor cells in vitro. But so far, leukemia primary cells long-term culture from patients marrow are still difficult because it is not clear how does the regulation of leukemic cells grow ex vivo, and lack of adequate investigation between leukemic stem cells with stromal cells. Based on our previous research, we cultured bone marrow mesenchymal stem cells from chronic myelogenous leukemia (CML) patients, and conceived a “pathologic biomimetic osteoblast niche”, to explore the growth of leukemia bone marrow primary cells from CML patients. Bio-derived bone was composited with marrow mesenchymal stem cells from CML patients and constructed a 3D biomimetic osteoblast niche. The mononuclear cells (MNCs) were collected with standard Ficoll-Paque separation from newly diagnosed CML patients. The MNCs were cultured for 2∼5 weeks in the 3D culture system and compared with 2D culture system. The results showed that the proportion of CD34+ cells are increased either in 3D or 2D culture systems. Compared to input, the proportion of CD34+ cells were increased 6.52(1.87∼9)vs. 3.18(1.07∼6.8)times at 2 weeks culture, and 13.6(3.59∼26.31)vs. 7.86(0.78∼18.0)times at 5 weeks culture. The proportion of CD34+/CD38- was higher in 3D culture system than 2D system. It was 5.55(2.1∼11.7)% vs. 2.4(0.9∼3.4)%, and 13.5(3.4∼34.2)% vs. 4.83(2.1∼8.9)% at 2 weeks and 5 weeks respectively. The function of cultured cells was evaluated in colony forming unit (CFU) assay and long term culture initial cell (LTC-IC) assay. 3D system produced more colonies than 2D system {103.33(82∼144)vs. 79(53∼122)} at 2 week culture and 47(33∼66)vs. 21.67(16∼27)at 5 week culture. LTC-IC are widely used as a surrogate in vitro culture for pluripotent stem cells, and those primitive progenitor cells responsible for leukemia in mice are named SL-IC or leukemia stem cells (LSCs). 3D system showed higher frequency of LTC-IC than that of 2D system after 2-week culture(2.23E-05(1.73∼2.56)vs.1.40E-05(1.21∼1.73)). FISH showed the proportion of Ph+ cells declined in both system during the culture, but not as rapidly as it did in 2D system{65%(3D)vs.63%(2D)at 2 week, 55%(3D)vs.35%(2D)at 5 week}, and the Ph+ cells were predominant derived from 3D culture. Our 3D culture system constructed with induced osteoblasts from mesnchymal stem cells in CML patients might provide a more suitable microenvironment for leukemic cells growing in vitro. The leukemic stem cells seemed to be regulated by the molecular signals mediated by osteoblast, and the biological characteristics of leukemia stem cells at least partially is maintained. It may be become a new method for studying leukemic HSCs/HPCs behavior in vitro.


Endocrinology ◽  
2015 ◽  
Vol 156 (12) ◽  
pp. 4761-4768 ◽  
Author(s):  
Margo P. Emont ◽  
Hui Yu ◽  
Heejin Jun ◽  
Xiaowei Hong ◽  
Nenita Maganti ◽  
...  

2013 ◽  
Vol 13 (1) ◽  
pp. 32-43 ◽  
Author(s):  
Francis H. Shen ◽  
Brian C. Werner ◽  
Haixiang Liang ◽  
Hulan Shang ◽  
Ning Yang ◽  
...  

2018 ◽  
Vol 38 (1) ◽  
Author(s):  
Haibo Zhou ◽  
Jianmin Shi ◽  
Chao Zhang ◽  
Pei Li

Mechanical compression often induces degenerative changes of disc nucleus pulposus (NP) tissue. It has been indicated that N-cadherin (N-CDH)-mediated signaling helps to preserve the NP cell phenotype. However, N-CDH expression and the resulting NP-specific phenotype alteration under the static compression and dynamic compression remain unclear. To study the effects of static compression and dynamic compression on N-CDH expression and NP-specific phenotype in an in vitro disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days and subjected to static or dynamic compression (0.4 MPa for 2 h once per day). The noncompressed discs were used as controls. Compared with the dynamic compression, static compression significantly down-regulated the expression of N-CDH and NP-specific markers (laminin, brachyury, and keratin 19); decreased the Alcian Blue staining intensity, glycosaminoglycan and hydroxyproline contents; and declined the matrix macromolecule (aggrecan and collagen II) expression. Compared with the dynamic compression, static compression causes N-CDH down-regulation, loss of NP-specific phenotype, and the resulting decrease in NP matrix synthesis.


2009 ◽  
Vol 94A (1) ◽  
pp. 1-8 ◽  
Author(s):  
Hossein Hosseinkhani ◽  
Mohsen Hosseinkhani ◽  
Shunji Hattori ◽  
Rumiko Matsuoka ◽  
Nanako Kawaguchi

2021 ◽  
Author(s):  
Marcos N. Barcellona ◽  
Julie E. Speer ◽  
Liufang Jing ◽  
Munish C. Gupta ◽  
Jacob M. Buchowski ◽  
...  

AbstractDegeneration and aging of the nucleus pulposus (NP) of the intervertebral disc (IVD) is accompanied by alterations in NP cell phenotype marked by a shift towards a fibroblast-like, catabolic state. We have recently demonstrated an ability to manipulate the phenotype of human adult degenerative NP cells through 2D culture upon poly(ethylene glycol) (PEG) based hydrogels dually functionalized with integrin- and syndecan-binding laminin-mimetic peptides (LMPs). In the present study, we sought to understand the transcriptomic changes elicited through NP cell interactions with the LMP-functionalized hydrogel system (LMP gel) by examining targets of interest a priori and by conducting unbiased analysis to identify novel mechanosensitive targets. The results of gene specific analysis demonstrated that the LMP gel promoted adult degenerative NP cells to upregulate 148 genes including several NP markers (e.g. NOG and ITGA6) and downregulate 277 genes, namely several known fibroblastic markers. Additionally, 13 genes associated with G protein-coupled receptors, many of which are known drug targets, were identified as differentially regulated following culture upon the gel. Furthermore, through gene set enrichment analysis we identified over 700 pathways enriched amongst the up- and downregulated genes including pathways related to cell differentiation, notochord morphogenesis, and intracellular signaling. Together these findings demonstrate the global mechanobiological effects induced by the LMP gel and confirm the ability of this substrate to modulate NP cell phenotype.


2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Désirée Baruffaldi ◽  
Marta Canta ◽  
Candido Fabrizio Pirri ◽  
Francesca Frascella

A 3D culture system based on a photocurable matrix has been developed. The aim is to create a 3D printable platform mimicking lung cancer tissue, to study tumor microenvironment evolution, in terms of structural (architecture) and molecular (signalling) components.


Sign in / Sign up

Export Citation Format

Share Document