Early Effects of Liver Regeneration on Endocrine Pancreas: In Vivo Change in Islet Morphology and In Vitro Assessment of Systemic Effects on β-Cell Function and Viability in the Rat Model of Two-Thirds Hepatectomy

2014 ◽  
Vol 46 (13) ◽  
pp. 921-926 ◽  
Author(s):  
F. Moreau ◽  
E. Seyfritz ◽  
F. Toti ◽  
S. Sigrist ◽  
W. Bietigier ◽  
...  
2021 ◽  
Vol 22 (24) ◽  
pp. 13330
Author(s):  
Stephanie Bridgeman ◽  
Gaewyn Ellison ◽  
Philip Newsholme ◽  
Cyril Mamotte

Histone deacetylase (HDAC) inhibitors such as butyrate have been reported to reduce diabetes risk and protect insulin-secreting pancreatic β cells in animal models. However, studies on insulin-secreting cells in vitro have found that butyrate treatment resulted in impaired or inappropriate insulin secretion. Our study explores the effects of butyrate on insulin secretion by BRIN BD-11 rat pancreatic β cells and examined effects on the expression of genes implicated in β cell function. Robust HDAC inhibition with 5 mM butyrate or trichostatin A for 24 h in β cells decreased basal insulin secretion and content, as well as insulin secretion in response to acute stimulation. Treatment with butyrate also increased expression of the disallowed gene hexokinase I, possibly explaining the impairment to insulin secretion, and of TXNIP, which may increase oxidative stress and β cell apoptosis. In contrast to robust HDAC inhibition (>70% after 24 h), low-dose and acute high-dose treatment with butyrate enhanced nutrient-stimulated insulin secretion. In conclusion, although protective effects of HDAC inhibition have been observed in vivo, potent HDAC inhibition impairs β cell function in vitro. The chronic low dose and acute high dose butyrate treatments may be more reflective of in vivo effects.


2017 ◽  
Author(s):  
Jia Zhao ◽  
Weijian Zong ◽  
Yi Wu ◽  
Jiayu Shen ◽  
Dongzhou Gou ◽  
...  

AbstractThe insulin-secreting cells generated from stem cells in vitro are less glucose responsive than primary β-cells. To search for the missing ingredients that are needed for β-cell maturation, we have longitudinally monitored function of every β-cell in Tg (ins:Rcamp1.07) zebrafish embryos with a newly-invented two-photon light-sheet microscope. We have shown that β-cell maturation begins from the islet mantle and propagates to the islet core during the hatching period, coordinated by the islet vascularization. Lower concentration of glucose is optimal to initiate β-cell maturation, while increased glucose delivery to every cell through microcirculation is required for functional boosting of the β-cells. Both the initiation and the boosting of β-cell maturation demands activation of calcineurin/NFAT by glucose. Calcineurin activator combined with glucose promotes mouse neonatal β-cells cultured in vitro to mature to a functional state similar to adult β-cells, suggesting a new strategy for improving stem cell-derived β-like cell function in vitro.


2018 ◽  
Vol 15 (9) ◽  
pp. 969-978
Author(s):  
Huma Aslam Bhatti ◽  
Kiran Maryam ◽  
Rizwana S. Waraich ◽  
Abdul Hameed ◽  
Rahman M. Hafizur

Endocrinology ◽  
2016 ◽  
Vol 157 (12) ◽  
pp. 4677-4690 ◽  
Author(s):  
Anika Sahr ◽  
Carmen Wolke ◽  
Jonas Maczewsky ◽  
Peter Krippeit-Drews ◽  
Anja Tetzner ◽  
...  

Endocrinology ◽  
2015 ◽  
Vol 156 (10) ◽  
pp. 3570-3580 ◽  
Author(s):  
Hiroshi Nomoto ◽  
Takuma Kondo ◽  
Hideaki Miyoshi ◽  
Akinobu Nakamura ◽  
Yoko Hida ◽  
...  

The large-Maf transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) has been found to be crucial for insulin transcription and synthesis and for pancreatic β-cell function and maturation. However, insights about the effects of small Maf factors on β-cells are limited. Our goal was to elucidate the function of small-Maf factors on β-cells using an animal model of endogenous small-Maf dysfunction. Transgenic (Tg) mice with β-cell-specific expression of dominant-negative MafK (DN-MafK) experiments, which can suppress the function of all endogenous small-Mafs, were fed a high-fat diet, and their in vivo phenotypes were evaluated. Phenotypic analysis, glucose tolerance tests, morphologic examination of β-cells, and islet experiments were performed. DN-MafK-expressed MIN6 cells were also used for in vitro analysis. The results showed that DN-MafK expression inhibited endogenous small-Maf binding to insulin promoter while increasing MafA binding. DN-MafK Tg mice under high-fat diet conditions showed improved glucose metabolism compared with control mice via incremental insulin secretion, without causing changes in insulin sensitivity or MafA expression. Moreover, up-regulation of insulin and glucokinase gene expression was observed both in vivo and in vitro under DN-MafK expression. We concluded that endogenous small-Maf factors negatively regulates β-cell function by competing for MafA binding, and thus, the inhibition of small-Maf activity can improve β-cell function.


2011 ◽  
Vol 300 (2) ◽  
pp. E255-E262 ◽  
Author(s):  
Adria Giacca ◽  
Changting Xiao ◽  
Andrei I. Oprescu ◽  
Andre C. Carpentier ◽  
Gary F. Lewis

The phenomenon of lipid-induced pancreatic β-cell dysfunction (“lipotoxicity”) has been very well documented in numerous in vitro experimental systems and has become widely accepted. In vivo demonstration of β-cell lipotoxicity, on the other hand, has not been consistently demonstrated, and there remains a lack of consensus regarding the in vivo effects of chronically elevated free fatty acids (FFA) on β-cell function. Much of the disagreement relates to how insulin secretion is quantified in vivo and in particular whether insulin secretion is assessed in relation to whole body insulin sensitivity, which is clearly reduced by elevated FFA. By correcting for changes in in vivo insulin sensitivity, we and others have shown that prolonged elevation of FFA impairs β-cell secretory function. Prediabetic animal models and humans with a positive family history of type 2 diabetes are more susceptible to this impairment, whereas those with severe impairment of β-cell function (such as individuals with type 2 diabetes) demonstrate no additional impairment of β-cell function when FFA are experimentally raised. Glucolipotoxicity (i.e., the combined β-cell toxicity of elevated glucose and FFA) has been amply demonstrated in vitro and in some animal studies but not in humans, perhaps because there are limitations in experimentally raising plasma glucose to sufficiently high levels for prolonged periods of time. We and others have shown that therapies directed toward diminishing oxidative stress and ER stress have the potential to reduce lipid-induced β-cell dysfunction in animals and humans. In conclusion, lipid-induced pancreatic β-cell dysfunction is likely to be one contributor to the complex array of genetic and metabolic insults that result in the relentless decline in pancreatic β-cell function in those destined to develop type 2 diabetes, and mechanisms involved in this lipotoxicity are promising therapeutic targets.


2021 ◽  
Author(s):  
Júlia Rodríguez-Comas ◽  
Javier Ramón-Azcón

AbstractDiabetes mellitus is a significant public health problem worldwide. It encompasses a group of chronic disorders characterized by hyperglycemia, resulting from pancreatic islet dysfunction or as a consequence of insulin-producing β-cell death. Organ-on-a-chip platforms have emerged as technological systems combining cell biology, engineering, and biomaterial technological advances with microfluidics to recapitulate a specific organ’s physiological or pathophysiological environment. These devices offer a novel model for the screening of pharmaceutical agents and to study a particular disease. In the field of diabetes, a variety of microfluidic devices have been introduced to recreate native islet microenvironments and to understand pancreatic β-cell kinetics in vitro. This kind of platforms has been shown fundamental for the study of the islet function and to assess the quality of these islets for subsequent in vivo transplantation. However, islet physiological systems are still limited compared to other organs and tissues, evidencing the difficulty to study this “organ” and the need for further technological advances. In this review, we summarize the current state of islet-on-a-chip platforms that have been developed so far. We recapitulate the most relevant studies involving pancreatic islets and microfluidics, focusing on the molecular and cellular-scale activities that underlie pancreatic β-cell function.


2017 ◽  
Vol 91 (9) ◽  
pp. 3135-3144 ◽  
Author(s):  
Ya-Wen Chen ◽  
Kuo-Cheng Lan ◽  
Jing-Ren Tsai ◽  
Te-I Weng ◽  
Ching-Yao Yang ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Jia Zhao ◽  
Weijian Zong ◽  
Yiwen Zhao ◽  
Dongzhou Gou ◽  
Shenghui Liang ◽  
...  

How pancreatic β-cells acquire function in vivo is a long-standing mystery due to the lack of technology to visualize β-cell function in living animals. Here, we applied a high-resolution two-photon light-sheet microscope for the first in vivo imaging of Ca2+activity of every β-cell in Tg (ins:Rcamp1.07) zebrafish. We reveal that the heterogeneity of β-cell functional development in vivo occurred as two waves propagating from the islet mantle to the core, coordinated by islet vascularization. Increasing amounts of glucose induced functional acquisition and enhancement of β-cells via activating calcineurin/nuclear factor of activated T-cells (NFAT) signaling. Conserved in mammalians, calcineurin/NFAT prompted high-glucose-stimulated insulin secretion of neonatal mouse islets cultured in vitro. However, the reduction in low-glucose-stimulated insulin secretion was dependent on optimal glucose but independent of calcineurin/NFAT. Thus, combination of optimal glucose and calcineurin activation represents a previously unexplored strategy for promoting functional maturation of stem cell-derived β-like cells in vitro.


Sign in / Sign up

Export Citation Format

Share Document