scholarly journals Different Methods and Technical Considerations of Decompressive Craniectomy in the Treatment of Traumatic Brain Injury: A Review

2017 ◽  
Vol 06 (01) ◽  
pp. 036-040 ◽  
Author(s):  
Amit Ghosh

Decompressive craniectomy, which is performed worldwide for the treatment of severe traumatic brain injury (TBI), is a surgical procedure in which part of the skull is removed to allow the brain to swell without being squeezed. On 1901, Kocher was the first surgeon to promote surgical decompression in posttraumatic brain swelling. In this article, different methods of decompressive craniectomy and its technical considerations have been reviewed.

Neurosurgery ◽  
2010 ◽  
Vol 66 (6) ◽  
pp. 1111-1119 ◽  
Author(s):  
Gregory M. Weiner ◽  
Michelle R. Lacey ◽  
Larami Mackenzie ◽  
Darshak P. Shah ◽  
Suzanne G. Frangos ◽  
...  

Abstract BACKGROUND Increased intracranial pressure (ICP) can cause brain ischemia and compromised brain oxygen (PbtO2 ≤ 20 mm Hg) after severe traumatic brain injury (TBI). OBJECTIVE We examined whether decompressive craniectomy (DC) to treat elevated ICP reduces the cumulative ischemic burden (CIB) of the brain and therapeutic intensity level (TIL). METHODS Ten severe TBI patients (mean age, 31.4 ± 14.2 years) who had continuous PbtO2 monitoring before and after delayed DC were retrospectively identified. Patients were managed according to the guidelines for the management of severe TBI. The CIB was measured as the total time spent between a PbtO2 of 15 to 20, 10 to 15, and 0 to 10 mm Hg. The TIL was calculated every 12 hours. Mixed-effects models were used to estimate changes associated with DC. RESULTS DC was performed on average 2.8 days after admission. DC was found to immediately reduce ICP (mean [SEM] decrease was 7.86 mm Hg [2.4 mm Hg]; P = .005). TIL, which was positively correlated with ICP (r = 0.46, P ≤ .001), was reduced within 12 hours after surgery and continued to improve within the postsurgical monitoring period (P ≤ .001). The duration and severity of CIB were significantly reduced as an effect of DC in this group. The overall mortality rate in the group of 10 patients was lower than predicted at the time of admission (P = .015). CONCLUSION These results suggest that a DC for increased ICP can reduce the CIB of the brain after severe TBI. We suggest that DC be considered early in a patient's clinical course, particularly when the TIL and ICP are increased.


2021 ◽  
Vol 7 (10) ◽  
pp. eabe0207
Author(s):  
Charles-Francois V. Latchoumane ◽  
Martha I. Betancur ◽  
Gregory A. Simchick ◽  
Min Kyoung Sun ◽  
Rameen Forghani ◽  
...  

Severe traumatic brain injury (sTBI) survivors experience permanent functional disabilities due to significant volume loss and the brain’s poor capacity to regenerate. Chondroitin sulfate glycosaminoglycans (CS-GAGs) are key regulators of growth factor signaling and neural stem cell homeostasis in the brain. However, the efficacy of engineered CS (eCS) matrices in mediating structural and functional recovery chronically after sTBI has not been investigated. We report that neurotrophic factor functionalized acellular eCS matrices implanted into the rat M1 region acutely after sTBI significantly enhanced cellular repair and gross motor function recovery when compared to controls 20 weeks after sTBI. Animals subjected to M2 region injuries followed by eCS matrix implantations demonstrated the significant recovery of “reach-to-grasp” function. This was attributed to enhanced volumetric vascularization, activity-regulated cytoskeleton (Arc) protein expression, and perilesional sensorimotor connectivity. These findings indicate that eCS matrices implanted acutely after sTBI can support complex cellular, vascular, and neuronal circuit repair chronically after sTBI.


2021 ◽  
Author(s):  
Alex Vicino ◽  
Philippe Vuadens ◽  
Bertrand Léger ◽  
Charles Benaim

Abstract PurposeDecompressive craniectomy (DC) can rapidly reduce intracranial pressure and save lives in the acute phase of severe traumatic brain injury (TBI) or stroke, but little is known about the long-term outcome after DC. We evaluated quality of life (QoL) a few years after DC for severe TBI/stroke.MethodsThe following data were collected for stroke/TBI patients hospitalized for neurorehabilitation after DC: 1) at discharge, motor and cognitive sub-scores of the Functional Independence Measure (motor-FIM [score 13-91] and cognitive-FIM [score 5-35]) and 2) more than 4 years after discharge, the QOLIBRI health-related QoL (HR-QoL) score (0-100; <60 representing low or impaired QoL) and the return to work (RTW: 0%, partial, 100%)ResultsWe included 88 patients (66 males, median age 38 [interquartile range 26.3-51.0], 65 with TBI/23 stroke); 46 responded to the HR-QoL questionnaire. Responders and non-responders had similar characteristics (age, sex, functional levels upon discharge). Median motor-FIM and cognitive-FIM scores were 85/91 and 27/35, with no significant difference between TBI and stroke patients. Long-term QoL was borderline low for TBI patients and within normal values for stroke patients (score 58.0[42.0-69.0] vs. 67.0[54.0-81.5], p=0.052). RTW was comparable between the groups (62% full time).ConclusionWe already knew that DC can save the lives of TBI or stroke patients in the acute phase and this study suggests that their long-term quality of life is generally quite acceptable.


2008 ◽  
Vol 108 (5) ◽  
pp. 943-949 ◽  
Author(s):  
Chi Long Ho ◽  
Chee Meng Wang ◽  
Kah Keow Lee ◽  
Ivan Ng ◽  
Beng Ti Ang

Object This study addresses the changes in brain oxygenation, cerebrovascular reactivity, and cerebral neurochemistry in patients following decompressive craniectomy for the control of elevated intracranial pressure (ICP) after severe traumatic brain injury (TBI). Methods Sixteen consecutive patients with isolated TBI and elevated ICP, who were refractory to maximal medical therapy, underwent decompressive craniectomy over a 1-year period. Thirteen patients were male and 3 were female. The mean age of the patients was 38 years and the median Glasgow Coma Scale score on admission was 5. Results Six months following TBI, 11 patients had a poor outcome (Group 1, Glasgow Outcome Scale [GOS] Score 1–3), whereas the remaining 5 patients had a favorable outcome (Group 2, GOS Score 4 or 5). Decompressive craniectomy resulted in a significant reduction (p < 0.001) in the mean ICP and cerebrovascular pressure reactivity index to autoregulatory values (< 0.3) in both groups of patients. There was a significant improvement in brain tissue oxygenation (PbtO2) in Group 2 patients from 3 to 17 mm Hg and an 85% reduction in episodes of cerebral ischemia. In addition, the durations of abnormal PbtO2 and biochemical indices were significantly reduced in Group 2 patients after decompressive craniectomy, but there was no improvement in the biochemical indices in Group 1 patients despite surgery. Conclusions Decompressive craniectomy, when used appropriately in protocol-driven intensive care regimens for the treatment of recalcitrant elevated ICP, is associated with a return of abnormal metabolic parameters to normal values in patients with eventually favorable outcomes.


Neurosurgery ◽  
2011 ◽  
Vol 68 (4) ◽  
pp. 867-873 ◽  
Author(s):  
Marlene Fischer ◽  
Peter Lackner ◽  
Ronny Beer ◽  
Raimund Helbok ◽  
Stephanie Klien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document