Andermann Syndrome in a Pakistani Family Caused by a Novel Mutation in SLC12A6

2017 ◽  
Vol 15 (02) ◽  
pp. 090-094 ◽  
Author(s):  
Tatiana Muñoz ◽  
Pradeep Krishnan ◽  
Jiri Vajsar ◽  
Suzanne Laughlin ◽  
Grace Yoon

AbstractAgenesis of the corpus callosum with peripheral neuropathy (ACCPN) or Andermann syndrome is an autosomal recessive condition caused by mutations in SLC12A6. The neurodegenerative features are characterized primarily by severe and progressive polyneuropathy, with eventual loss of ambulation and limited lifespan. We report two siblings with Andermann syndrome from a consanguineous Pakistani family with severe global developmental delays, sensory-motor polyneuropathy, and complete agenesis of the corpus callosum, associated with a homozygous c.745+2T>A mutation in SLC12A6. This sequence change is predicted to inactivate the donor splice site and abolish correct splicing of intron 6, yielding an abnormally truncated protein. This is the first report of Andermann syndrome in patients of Pakistani origin, which supports the pan-ethnic incidence of this condition.

Author(s):  
Leonardo Furtado Freitas ◽  
Gabriel Santaterra Barros ◽  
Enrico Affonso Barletta ◽  
Pablo Picasso de Araújo Coimbra ◽  
Charles Marques Lourenço ◽  
...  

AbstractChudley–McCullough syndrome (CMS) is an autosomal recessive condition first described in 1997. The most striking features of this syndrome include sensorineural hearing loss, craniofacial disproportion, and brain abnormalities such as agenesis of the corpus callosum, polymicrogyria, ventriculomegaly, and changes in cerebellar architecture. We describe the case of a 2-year-old patient with CMS confirmed by genetic testing (GPSM2 gene mutation), who presented with global developmental delays and characteristic neuroimaging features including arachnoid cysts, agenesis of the corpus callosum, cerebellar dysplasia, and frontal heterotopia. Early recognition of this rare clinical syndrome may reduce the diagnostic odyssey and ultimately improve the quality of life for affected children. This report will focus on unique clinical and radiographic features of CMS.


2021 ◽  
Vol 14 (10) ◽  
pp. e244641
Author(s):  
Petya Bogdanova-Mihaylova ◽  
Patricia McNamara ◽  
Sarah Burton-Jones ◽  
Sinéad M Murphy

Hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC) is a rare autosomal recessive condition characterised by early-onset severe progressive neuropathy, variable degrees of ACC and cognitive impairment. Mutations in SLC12A6 (solute carrier family 12, member 6) encoding the K+–Cl- transporter KCC3 have been identified as the genetic cause of HMSN/ACC. We describe fraternal twins with compound heterozygous mutations in SLC12A6 and much milder phenotype than usually described. Neither of our patients requires assistance to walk. The female twin is still running and has a normal intellect. Charcot-Marie-Tooth Examination Score 2 was 8/28 in the brother and 5/28 in the sister. Neurophysiology demonstrated a length-dependent sensorimotor neuropathy. MRI brain showed normal corpus callosum. Genetic analysis revealed compound heterozygous mutations in SLC12A6, including a whole gene deletion. These cases expand the clinical and genetic phenotype of this rare condition and highlight the importance of careful clinical phenotyping.


Neurology ◽  
1997 ◽  
Vol 48 (1) ◽  
pp. 258-260 ◽  
Author(s):  
M. S. Ahmed ◽  
S. Afsar ◽  
A. Hentati ◽  
A. Ahmad ◽  
J. Pasha ◽  
...  

2018 ◽  
Vol 08 (01) ◽  
pp. 015-019
Author(s):  
Sana Durrani ◽  
Bee Chen ◽  
Yusnita Yakob ◽  
Lua Hian ◽  
Bushra Afroze

AbstractMitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare multisystem autosomal recessive disorder. The disease is clinically heterogeneous with gastrointestinal symptoms of intestinal dysmotility and cachexia as well as neurological symptoms of ophthalmoplegia, neuropathy, sensorineural hearing impairment, and diffuse leukoencephalopathy being most prominent. MNGIE is caused by mutations in TYMP, a gene that encodes thymidine phosphorylase (TP)—a cytosolic enzyme. Mutations in TYMP lead to very low TP catalytic activity, resulting in dramatically increased thymidine and deoxyuridine in plasma. We describe the clinical, biochemical, and neuroimaging findings of three boys with MNGIE from a Pakistani family with a novel homozygous mutation, c.798_801dupCGCG p. (Ala268Argfs*?), in exon 7 of TYMP.


2019 ◽  
Vol 19 (9) ◽  
pp. 683-687 ◽  
Author(s):  
Tawfiq Froukh ◽  
Ammar Hawwari

Background: Keratoconus (KC) is usually bilateral, noninflammatory progressive corneal ectasia in which the cornea becomes progressively thin and conical. Despite the strong evidence of genetic contribution in KC, the etiology of KC is not understood in most cases. Methods: In this study, we used whole-exome sequencing to identify the genetic cause of KC in two sibs in a consanguineous family. The Homozygous frameshift variant NM_001253826.1:c.60delC;p.Leu21Cysfs*6 was identified in the gene Nacetylgalactosaminyltransferase 14 (GALNT14). The variant does not exist in all public databases neither in our internal exome database. Moreover, no database harbours homozygous loss of function variants in the candidate gene. Result: GALNT14 catalyses the initial reaction in O-linked oligosaccharide biosynthesis, the transfer of an N-acetyl-D- galactosamine residue to a serine or threonine residue on target proteins especially Mucins. Conclusion: As alterations of mucin’s glycosylation are linked to a number of eye diseases, we demonstrate in this study an association between the truncated protein GALNT14 and KC.


2021 ◽  
Vol 9 ◽  
pp. 232470962110146
Author(s):  
Erin Finn ◽  
Kimberly Kripps ◽  
Christina Chambers ◽  
Michele Rapp ◽  
Naomi J. L. Meeks ◽  
...  

Lipoid congenital adrenal hyperplasia (LCAH) is typically inherited as an autosomal recessive condition. There are 3 reports of individuals with a dominantly acting heterozygous variant leading to a clinically significant phenotype. We report a 46,XY child with a novel heterozygous intronic variant in STAR resulting in LCAH with an attenuated genital phenotype. The patient presented with neonatal hypoglycemia and had descended testes with a fused scrotum and small phallus. Evaluation revealed primary adrenal insufficiency with deficiencies of cortisol, aldosterone, and androgens. He was found to have a de novo heterozygous novel variant in STAR: c.65-2A>C. We report a case of a novel variant and review of other dominant mutations at the same position in the literature. Clinicians should be aware of the possibility of attenuated genital phenotypes of LCAH and the contribution of de novo variants in STAR at c.65-2 to the pathogenesis of that phenotype.


Blood ◽  
2002 ◽  
Vol 100 (2) ◽  
pp. 692-694 ◽  
Author(s):  
Daniel F. Wallace ◽  
Palle Pedersen ◽  
Jeannette L. Dixon ◽  
Peter Stephenson ◽  
Jeffrey W. Searle ◽  
...  

Abstract Hemochromatosis is a common disorder characterized by excess iron absorption and accumulation of iron in tissues. Usually hemochromatosis is inherited in an autosomal recessive pattern and is caused by mutations in the HFE gene. Less common non-HFE–related forms of hemochromatosis have been reported and are caused by mutations in the transferrin receptor 2 gene and in a gene localized to chromosome 1q. Autosomal dominant forms of hemochromatosis have also been described. Recently, 2 mutations in theferroportin1 gene, which encodes the iron transport protein ferroportin1, have been implicated in families with autosomal dominant hemochromatosis from the Netherlands and Italy. We report the finding of a novel mutation (V162del) in ferroportin1 in an Australian family with autosomal dominant hemochromatosis. We propose that this mutation disrupts the function of the ferroportin1 protein, leading to impaired iron homeostasis and iron overload.


Sign in / Sign up

Export Citation Format

Share Document