Role of Platelet Adhesion and Aggregation in Thrombus Formation: Response

1998 ◽  
Vol 79 (02) ◽  
pp. 455-455 ◽  
Author(s):  
Z. M. Ruggeri
2008 ◽  
Vol 99 (01) ◽  
pp. 108-115 ◽  
Author(s):  
Koichiro Yano ◽  
Ken-ichi Tsubota ◽  
Takuji Ishikawa ◽  
Shigeo Wada ◽  
Takami Yamaguchi ◽  
...  

SummaryWe propose a method to analyze platelet adhesion and aggregation computationally, taking into account the distinct properties of two plasma proteins, vonWillebrand factor (vWF) and fibrinogen (Fbg). In this method, the hydrodynamic interactions between platelet particles under simple shear flow were simulated using Stokesian dynamics based on the additivity of velocities. The binding force between particles mediated by vWF and Fbg was modeled using the Voigt model. Two Voigt models with different properties were introduced to consider the distinct behaviors of vWF and Fbg. Our results qualitatively agreed with the general observation of a previous in-vitro experiment, thus demonstrating that the significant development of thrombus formation in height requires not only vWF, but also Fbg. This agreement of simulation and experimental results qualitatively validates our model and suggests that consideration of the distinct roles of vWF and Fbg is essential to investigate the physiological and pathophysiological mechanisms of thrombus formation using a computational approach.


1994 ◽  
Vol 86 (2) ◽  
pp. 327-332 ◽  
Author(s):  
Edith Fressinaud ◽  
Augusto B. Federici ◽  
Giancarlo Castaman ◽  
Chantal Rothschild ◽  
Francesco Rodeghiero ◽  
...  

1972 ◽  
Vol 201 (1) ◽  
pp. 329-342 ◽  
Author(s):  
Edward F. Leonard ◽  
Eric F. Grabowski ◽  
Vincent T. Turitto

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3197-3197 ◽  
Author(s):  
Yan Yang ◽  
Zhenyin Shi ◽  
Adili Reheman ◽  
Wuxun Jin ◽  
Conglei Li ◽  
...  

Abstract Abstract 3197 Background: Thrombosis and cardiovascular diseases (CVDs) result from blood vessel occlusion by inappropriately activated platelets. They are the leading causes of morbidity and mortality worldwide. Anthocyanins are major phytochemicals abundant in plant food and have been shown to play a protective role against CVDs. Our previous studies have demonstrated that anthocyanins are antioxidative and prevent inflammation (J Biol Chem. 2005; 280:36792-01; Arterioscler Thromb Vasc Biol. 2007; 27:519-24), which may indirectly affect platelet function. It has also been reported that anthocyanins affect platelet activities in whole blood and platelet rich plasma (PRP). However, the direct effects of anthocyanins on platelet function and thrombus formation have not been studied. Methods: Here we investigated the effects of anthocyanins on thrombosis using purified platelets as well as several thrombosis models in vitro and in vivo. Cyaniding-3-gulucoside (Cy-3-g) and delphinidin-3-glucoside (Dp-3-g), the two predominantly bioactive compounds of anthocyanin preparations, were prepared from Polyphenol AS Company in Norway. Purified gel-filtered platelets and PRP from healthy human volunteers and C57BL/6J mice were incubated at 37°C for 10 minutes with different concentrations (0.5μM, 5μM and 50μM) of Cy-3-g, Dp-3-g or PBS buffer as a control. Platelet aggregation was assessed by aggregometry using 5μM ADP, 10μg/ml collagen, or 100μM thrombin receptor activating peptide (TRAP; AYPGKF) as agonists. Platelet adhesion and aggregation were assessed in response to an immobilized collagen matrix in an ex vivo perfusion chamber at both high (1800 s-1) and low (600 s-1) shear rates. The expression of activated GPIIbIIIa was determined via PAC-1 monoclonal antibody in flow cytometry. Lastly, the effects of anthocyanins on thrombus formation in C57BL/6J mice were assessed using a FeCl3-induced intravital microscopy thrombosis model. Results: Both Cy-3-g and Dp-3-g significantly inhibited platelet aggregation induced by collagen and TRAP in gel-filtered platelets, and inhibited aggregation induced by ADP, TRAP and collagen in human and mouse PRP. These inhibitory functions were observed at Cy-3-g and Dp-3-g doses as low as 0.5μM. Cy-3-g and Dp-3-g also reduced the surface expression of activated GPIIbIIIa on resting human platelets in a dose-dependent manner. These compounds also markedly reduced platelet adhesion and aggregation in perfusion chamber assays at both low and high shear rates. Using intravital microscopy, we further demonstrated that Cy-3-g and Dp-3-g decreased platelet deposition, destabilized thrombi, and prolonged the time required for thrombus formation and vessel occlusion. Conclusions: our data clearly demonstrated for the first time that anthocyanin compounds directly inhibited platelet activation, adhesion and aggregation, as well as attenuated thrombus growth at both arterial and veinous shear stresses. These effects on platelets likely contribute to the protective effects of anthocyanins against thrombosis and CVDs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3501-3501
Author(s):  
Jiansong Huang ◽  
Xiaofeng Shi ◽  
Wenda Xi ◽  
Ping Liu ◽  
Xiaodong Xi

Abstract The RGT sequences of the integrin β3 tail directly and constitutively bind the inactive c-Src, regulating integrin αIIbβ3 signaling and platelet function. Previous work has shown that disrupting the interaction of c-Src with β3 via myristoylated RGT peptide or deletion of the RGT sequences in β3 selectively inhibits integrin αIIbβ3 outside-in signaling in platelets. However, the precise molecular mechanisms by which the Src-β3 association regulates integrin αIIbβ3 signaling need to be clarified. We found that active c-Src phosphoylated the Y747 and Y759 residues of β3 directly at the in vitro protein/protein level or in CHO cell models bearing Tac-β3 chimeras, which were devoid of the intact β3 signal transduction. Furthermore, data from mass spectrometry, [γ-32P] ATP incorporation assays and CHO cell/Tac-β3 chimeras demonstrated that the direct phosphorylation of Y747 and Y759 by active c-Src did not depend on the binding of c-Src to the RGT sequences of the β3 tail. To further investigate the biological functions of Src-β3 association in signal transduction we employed a cell-permeable and reduction-sensitive peptide (myr-AC∼CRGT), which disrupted the Src-β3 association in platelets independent of membrane-anchorage, and found that when platelets were stimulated by thrombin the c-Src activation and the phosphorylation of the tyrosine residues of the β3 tail were substantially inhibited by the presence of the peptide. These results suggest that one of the crucial biological functions of Src-β3 association is to serve as a “bridge” linking integrin signaling with the c-Src full activation and phosphorylation of the tyrosines of the β3 tail. To answer whether the RGT peptide binding to Src is able to alter the enzymatic activity of c-Src, we examined the Src-Csk association, the phosphorylation status of Y416 and Y527 of c-Src and the c-Src kinase catalytic activity. Results showed that myr-AC∼CRGT did not dissociate Csk from c-Src in resting platelets and the phosphorylation level of Y416 and Y527 of c-Src remained unaltered. Consistent data were also obtained from in vitro analysis of the c-Src kinase catalytic activity in the presence of CRGT peptide. These results suggest that myr-AC∼CRGT peptide per se does not fully activate c-Src. Myr-AC∼CRGT was also found to inhibit integrin αIIbβ3 outside-in signaling in human platelets. To examine the effect of the myr-AC∼CRGT on platelet adhesion and aggregation under flow conditions, we measured the platelet thrombus formation under different shear rates. Myr-AC∼CRGT did not affect the platelet adhesion at a wall shear rate of 125 s-1. The inability of myr-AC∼CRGT to affect platelet adhesion and aggregation remained at 500 s-1 shear rates. At 1,500 s-1, or 5,000 s-1 rates, myr-AC∼CRGT partially inhibited platelet adhesion and aggregation. These observations indicate that the Src-regulated outside-in signaling plays a pivotal role in the stable thrombus formation and the thrombus growth under flow conditions. The present study reveals novel insights into the molecular mechanisms by which c-Src regulates integrin αIIbβ3 signaling, particularly the phorsphorylation of the β3 cytoplasmic tyrosines, and provides first evidence in human platelets that the RGT peptide or derivatives regulate thrombus formation through dissociating the Src-β3 interaction. The data of this work allow us to anticipate that intracellular delivery of the RGT peptide or its analogues may have potential in the development of a new antithrombotic strategy where only the Src-β3 interaction is specifically interrupted so as to provide an effective inhibition on thrombosis together with a decent hemostasis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 156-156
Author(s):  
Christopher M. Spring ◽  
Wuxun Jin ◽  
Hong Yang ◽  
Adili Reheman ◽  
Guangheng Zhu ◽  
...  

Abstract Abstract 156 Platelet adhesion and aggregation at sites of vascular injury are key events required for haemostasis and thrombosis. It has been documented that von Willebrand factor (VWF) and fibrinogen (Fg) are required for platelet adhesion and aggregation. However, we previously showed that occlusive thrombi still form in mice deficient for both Fg and VWF (Fg/VWF−/−) via a β3 integrin-dependent pathway. Here, we have investigated novel, non-classical ligands of β3 integrin that may regulate platelet adhesion and aggregation. To identify potential ligand(s) of β3 integrin, latex beads were coated with purified human platelet β3 integrin and incubated with human plasma. Protein(s) specifically associated with β3 integrin were electrophoresed and apolipoprotein AIV (ApoA-IV) was identified by mass spectrometry. We found that ApoA-IV binds to the surface of stimulated platelets, but not to quiescent platelets or β3−/− platelets, and ApoA-IV/platelet association was blocked by the addition of a specific anti-β3 integrin monoclonal antibody. It appears that ApoA-IV binds to, but is not internalized by platelet β3 integrins. ApoA-IV-deficient (ApoA-IV−/−) mice exhibited enhanced platelet aggregation induced by ADP, Collagen, and TRAP in plasma (but not PIPES buffer) compared to wild type (WT) littermates. This enhancement was diminished when ApoA-IV−/− plasma was replaced by WT plasma, indicating that the reduction was due to plasma ApoA-IV and not an unrelated platelet effect. When platelets were incubated with FITC-Fg, ApoA-IV was able to reduce platelet/Fg association, indicating that ApoA-IV may act to displace pro-thrombotic β3 integrin ligand(s). In support of this, ApoA-IV reduced the number of adherent platelets on immobilized Fg in perfusion chamber assays and enhanced thrombus formation was observed when ApoA-IV−/− mouse blood was perfused over collagen. We found that addition of recombinant ApoA-IV inhibited platelet aggregation and thrombus formation in vitro, while the control apolipoprotein ApoA-I did not. Using intravital microscopy, we further demonstrated that early platelet deposition was increased, and the time for thrombus formation and vessel occlusion were shorter in ApoA-IV−/− mice, which can be corrected by recombinant ApoA-IV transfusion. Furthermore, recombinant ApoA-IV inhibited WT platelet aggregation, thrombus formation and enhanced thrombus dissolution both in vitro and in vivo. Our data demonstrate for the first time that ApoA-IV is a novel ligand of platelet β3 integrin that negatively regulates thrombosis. These new data are consistent with the reported association between ApoA-IV and reduced cardiovascular diseases, and establish the first link between ApoA-IV and thrombosis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2232-2232 ◽  
Author(s):  
Michele Mumaw ◽  
Maria de la Fuente ◽  
Carolyn Aldana ◽  
Wei Li ◽  
Marvin T Nieman

Abstract The regulation of hemostasis and thrombus formation is a tightly controlled event that has catastrophic consequences when it is deregulated. One of the hallmarks of the thrombus is aggregated platelets. Upon platelet stimulation, adhesion molecules become activated and mediate multiple cell-cell interactions. Therapeutically, blocking platelet adhesion is a proven method for preventing pathological arterial thrombus formation. However, targeting the primary adhesion receptor, integrin αIIbβ3, results in severe bleeding complications. Therefore, identifying novel proteins or uncovering novel functions for known proteins in platelets is a necessary first step to facilitate the development of safer anti-platelet therapeutics. We have identified that the cell adhesion molecule cadherin-6 forms a functional adhesion complex with α-catenin and β-catenin in platelets. The goal of our project was to determine the mechanism of cadherin-6 mediated adhesion in platelets. Our initial experiments demonstated that cadherin-6 and β-catenin co-localize at the plasma membrane in platelets using confocal immunofluorescence microscopy. We determined that α-catenin and β-catenin co-immunoprecipitate with cadherin-6 from platelet lysates. To examine the functional role of cadherin-6 on platelet aggregation we used a cadherin-6 blocking antibody (10 μg/ml). Blocking cadherin-6 inhibited mouse platelet aggregation induced by PAR4 peptide. We next determined the role of cadherin-6 in vivo by examining carotid artery thrombosis after 7.5% FeCl3 treatment. C57Bl6 mice were injected with cadherin-6 antibody IV and labeled with rhodamine 6G by jugular vein injection. Thrombus formation was imaged in real time by fluorescent intravital microscopy. Blocking cadherin-6 prevented thrombosis for the duration of the experiment (30 min). To verify that the effects that we observed were specific to cadherin-6 expressed on platelets, we isolated platelets from donor mice and treated with cadherin-6 antibody or control IgG ex vivo. The treated platelets were perfused into recipient mice that were irradiated with 11 Gy to make the animals thrombocytopenic. The cadherin-6 antibody treated platelets formed an occlusion at 26.4 ± 3.6 min vs. 13.7 ± 2.0 min for the IgG (p=0.03). Importantly, the cadherin-6 antibody did not affect platelet counts compared to IgG controls 2.97 ± 0.40 (×108) vs. 3.02 ± 0.20 (×108). These combined studies show that caderhin-6 forms a complex with the necessary proteins required to mediate adhesion in platelets. Our results demonstrate that platelet cadherin-6 has a physiologically important role during platelet activation and thrombus formation in vivo. In summary, we have identified a novel adhesion complex in platelets that may provide a mechanism to limit platelet aggregation therapeutically. On going studies will determine the regulation of the cadherin-6/catenin complex and how cadherin-6 cooperates with other platelet adhesion molecules. Disclosures No relevant conflicts of interest to declare.


1999 ◽  
Vol 189 (8) ◽  
pp. 1255-1264 ◽  
Author(s):  
Steffen Massberg ◽  
Matthias Sausbier ◽  
Peter Klatt ◽  
Markus Bauer ◽  
Alexander Pfeifer ◽  
...  

Atherosclerotic vascular lesions are considered to be a major cause of ischemic diseases, including myocardial infarction and stroke. Platelet adhesion and aggregation during ischemia–reperfusion are thought to be the initial steps leading to remodeling and reocclusion of the postischemic vasculature. Nitric oxide (NO) inhibits platelet aggregation and smooth muscle proliferation. A major downstream target of NO is cyclic guanosine 3′,5′-monophosphate kinase I (cGKI). To test the intravascular significance of the NO/cGKI signaling pathway in vivo, we have studied platelet–endothelial cell and platelet–platelet interactions during ischemia/reperfusion using cGKI-deficient (cGKI−/−) mice. Platelet cGKI but not endothelial or smooth muscle cGKI is essential to prevent intravascular adhesion and aggregation of platelets after ischemia. The defect in platelet cGKI is not compensated by the cAMP/cAMP kinase pathway supporting the essential role of cGKI in prevention of ischemia-induced platelet adhesion and aggregation.


1987 ◽  
Author(s):  
E Bastida ◽  
G Escolar ◽  
R Castillo ◽  
A Ordinas ◽  
J J Sixma

Fibronectin (FN) plays a role in several adhesion mediated functions including the interaction of platelets with subendothelium.We investigated the role of plasma FN in platelet adhesion and platelet thrombus formation under flow conditions.To do this we used two different perfusion models:1)the annular chamber with α -chymotrypsin-treated rabbit vessel segments and 2)the flat chamber with coverslips coated with fibrillar purified human collagen type III.Perfusates consisted of washed platelets, and washed red blood celIs,suspended in normal or FN-depleted plasma.Perfusions were carried out for 10 min at shear rates of 300 or 1300 sec™1 Platelet deposition and thrombus dimensions were morphometrically evaluated by a computerized system. We found that depletion of plasma FN significantly reduced the percentage of total coverage surface and percentage of platelet thrombus, at both shear rates studied, and in both perfusion systems (p < 0.01)(p < 0.01).The dimensions of the platelet thrombi formed in perfusions at high shear rate were also significantly reduced in perfusions carried out with FN-depleted plasma.(p < 0.01). Addition of purified FN to FN-depleted perfusates restored all the values to those measured in the control perfusions.These results indicate that, in addition to supporting platelet adhesion to the subendothelium and to fibrillar collagen, FN contributes to platelet thrombus formation under flow conditions.


Sign in / Sign up

Export Citation Format

Share Document