Entrainment and Annihilation of Reentrant Excitation in a Periodically Stimulated Ring of Excitable Media

1997 ◽  
Vol 36 (04/05) ◽  
pp. 290-293
Author(s):  
L. Glass ◽  
T. Nomura

Abstract:Excitable media, such as nerve, heart and the Belousov-Zhabo- tinsky reaction, exhibit a large excursion from equilibrium in response to a small but finite perturbation. Assuming a one-dimensional ring geometry of sufficient length, excitable media support a periodic wave of circulation. As in the periodic stimulation of oscillations in ordinary differential equations, the effects of periodic stimuli of the periodically circulating wave can be described by a one-dimensional Poincaré map. Depending on the period and intensity of the stimulus as well as its initial phase, either entrainment or termination of the original circulating wave is observed. These phenomena are directly related to clinical observations concerning periodic stimulation of a class of cardiac arrhythmias caused by reentrant wave propagation in the human heart.

Periodic stimulation of a nonlinear cardiac oscillator in vitro gives rise to complex dynamics that is well described by one-dimensional finite difference equations. As stimulation parameters are varied, a large number of different phase locked and chaotic rhythms is observed. Similar rhythms can be observed in the intact human heart when there is interaction between two pacemaker sites. Simplified models are analysed, which show some correspondence to clinical observations.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Sergei Pravdin ◽  
Hans Dierckx ◽  
Vladimir S. Markhasin ◽  
Alexander V. Panfilov

Scroll waves are three-dimensional vortices which occur in excitable media. Their formation in the heart results in the onset of cardiac arrhythmias, and the dynamics of their filaments determine the arrhythmia type. Most studies of filament dynamics were performed in domains with simple geometries and generic description of the anisotropy of cardiac tissue. Recently, we developed an analytical model of fibre structure and anatomy of the left ventricle (LV) of the human heart. Here, we perform a systematic study of the dynamics of scroll wave filaments for the cases of positive and negative tension in this anatomical model. We study the various possible shapes of LV and different degree of anisotropy of cardiac tissue. We show that, for positive filament tension, the final position of scroll wave filament is mainly determined by the thickness of the myocardial wall but, however, anisotropy attracts the filament to the LV apex. For negative filament tension, the filament buckles, and for most cases, tends to the apex of the heart with no or slight dependency on the thickness of the LV. We discuss the mechanisms of the observed phenomena and their implications for cardiac arrhythmias.


2003 ◽  
Vol 13 (09) ◽  
pp. 2733-2737
Author(s):  
M. deCastro ◽  
M. Gómez-Gesteira ◽  
M. N. Lorenzo ◽  
V. Pérez-Muñuzuri

Nucleation from a boundary is experimentally and numerically studied in a one-dimensional array in two excitable media consisting of Chua's circuits and the Oregonator model, respectively. Forcing from a boundary with a pulse of constant amplitude and infinite duration gives rise to a periodic wave train propagating through the array. As the amplitude of the pulse increases, wave period evolves to chaos through a period doubling cascade.


1972 ◽  
Vol 70 (1) ◽  
pp. 196-208 ◽  
Author(s):  
Bengt Karlberg ◽  
Sven Almqvist

ABSTRACT The effects of the administration of normal saline in four normal subjects and the single iv injections of synthetic pyroglutamyl-histidyl-proline amide (TRH) in doses of 6.25, 12.5, 25, 50, 100, 200 and 400 μg in 12 healthy subjects were evaluated by clinical observations and serial measurements from −10 to + 360 minutes of serum TSH, PBI, STH, cholesterol, glucose and insulin. Normal saline and TRH 6.25 μg iv did not change the serum TSH level. The minimum iv dose of TRH increasing serum TSH within 10 minutes was 12.5 μg. Nine of 12 subjects gave maximal increases of serum TSH after TRH 100 μg and all after 200 and 400 μg. The time for the peak response varied with the dose from 15 to 60 minutes. The dose-response curves, average and individual, were complex and not linear. This was interpreted as a varying degree of stimulation of both pituitary synthesis and release of TSH by TRH. PBI changes were measured at 2 h and 6 h. Minimum dose for a significant increase of PBI was 12.5 μg and 6.25 μg of TRH for the respective times. No change in basal STH-levels occurred in 53 of 65 TRH-stimulation tests. Nine of the 12 changes in serum STH occurred in four subjects with varying basal STH-levels. No changes were found in serum cholesterol, glucose or insulin. Our results show that 50 μg of TRH can be used as a standard dose for the single iv stimulation of pituitary release of TSH. TRH stimulated both TSH and STH release in 18% of our tests.


2006 ◽  
Vol 06 (04) ◽  
pp. 399-428
Author(s):  
R. MIFTAHOF

Electrophysiological mechanisms of co-transmission by serotonin (5-HT) and acetylcholine (ACh), co-expression of their receptor types, i.e., 5-HT type 3 and 4, nicotinic cholinerginc (nACh) and muscarinic cholinergic (μACh), and effects of selective and non-selective 5-HT3 and 5-HT4 receptor agonists/antagonists, on electromechanical activity of the gut were studied numerically. Two series of numerical experiments were performed. First, the dynamics of the generation and propagation of electrical signals interconnected with the primary sensory (AH) neurons, motor (S) neurons and smooth muscle cells were studied in a one-dimensional model. Simulations showed that stimulation of the 5-HT3 receptors reduced the threshold of activation of the mechanoreceptors by 17.6%. Conjoint excitation of the 5-HT3 and 5-HT4 receptors by endogenous serotonin converted the regular firing pattern of electrical discharges of the AH and S neurons to a beating mode. Activation confined to 5-HT3 receptors, located on the somas of the adjacent AH and S type neurons, could not sustain normal signal transduction between them. It required ACh as a co-transmitter and co-activation of the nACh receptors. Application of selective 5-HT3 receptor antagonists inhibited dose-dependently the production of action potentials at the level of mechanoreceptors and the soma of the primary sensory neuron and increased the threshold activation of the mechanoreceptors. Normal mechanical contractile activity depended on co-stimulation of the 5-HT4 and μACh receptors on the membrane of smooth muscle cells. In the second series of simulations, which involved a spatio-temporal model of the functional unit, effects of co-transmission by ACh and 5-HT on the electromechanical response in a segment of the gut were analyzed. Results indicated that propagation of the wave of excitation between the AH and S neurons within the myenteric nervous plexus in the presence of 5-HT3 receptor antagonists was supported by co-release of ACh. Co-stimulation of 5-HT3, nACh and μACh receptors impaired propulsive activity of the gut. The bolus showed uncoordinated movements. In an ACh-free environment Lotronex (GlaxoSmithKline), a 5-HT3 receptor antagonist, significantly increased the transit time of the pellet along the gut. In the presence of ACh, Lotronex produced intensive tonic-type contractions in the longitudinal and circular smooth muscle layers and eliminated propulsive activity. The 5HT4 receptor agonist, Zelnorm (Novartis), preserved the reciprocal electromechanical relationships between the longitudinal and circular smooth muscle layers. The drug changed the normal propulsive pattern of activity to an expulsive (non-mixing) type. Treatment of the gut with selective 5HT4 receptor antagonists increased the transit time by disrupting the migrating myoelectrical complex. Cisapride (Janssen), a mixed 5HT3 and 5HT4 receptor agonist, increased excitability of the AH and S neurons and the frequency of slow waves. Longitudinal and circular smooth muscle syncytia responded with the generation of long-lasting tonic contractions, resulting in a "squeezing" type of pellet movement. Comparison of the theoretical results obtained on one-dimensional and spatio-temporal models to in vivo and in vitro experimental data indicated satisfactory qualitative, and where available, quantitative agreement.


1911 ◽  
Vol 14 (3) ◽  
pp. 217-234 ◽  
Author(s):  
G. Canby Robinson ◽  
George Draper

In hearts showing auricular fibrillation mechanical stimulation of the right vagus nerve causes, as a rule, marked slowing or stoppage of ventricular rhythm, without producing any appreciable effect in the electrocardiographic record of the auricular fibrillation. The ventricular pauses are apparently due to the blocking of stimuli from the auricles. The force of ventricular systole is distinctly weakened for several beats after vagus stimulation, and ectopic ventricular systoles have been seen in several instances, apparently the result of the vagus action. There may, in some cases, be lowered excitability of the ventricles, while no constant change is seen in the size of the electrical complexes representing ventricular systole.


1978 ◽  
Vol 235 (1) ◽  
pp. H1-H17 ◽  
Author(s):  
A. L. Wit ◽  
P. F. Cranefield

Mechanisms that cause reentry were defined in rings of tissue cut from jellyfish as early as 1906 by Mayer. The concepts were developed by Mines and Garrey during the next 10 years. Lewis then tried to demonstrate that reentry caused atrial flutter. Lewis, Garrey, and later Moe also proposed that atrial fibrillation was caused by reentry. Rosenblueth provided additional experimental evidence that reentry could cause atrial arrhythmias after crushing the intercaval bridge of atrial muscle. Recent studies by Allessie using microelectrodes have provided detailed evidence for reentry in atrial tissue. Mines in 1913 also proposed that reentry could occur in the AV node. Scherf then introduced the concept of functional longitudinal dissociation as a cause of return extrasystoles and this was later shown to happen in the node by Moe and his colleagues. Reentry can also occur between atria and ventricles utilizing accessory connecting pathways. Schmitt and Erlanger in 1913 were the first to do experiments which indicated that reentry can also occur in the ventricles. Subsequently it was shown that reentry can occur in Purkinje fiber bundles. Reentry in ventricular muscle may also cause some of the arrhythmias that occur after myocardial infarction.


Sign in / Sign up

Export Citation Format

Share Document