VON WILLEBRAND FACTOR (vWF) PRO-POLYPEPTIDE IS REQUIRED FOR vWF MULTIMER FORMATION

1987 ◽  
Author(s):  
C L Verweij ◽  
M Hart ◽  
H Pannekoek

The von Willebrand factor (vWF) is a multimeric plasma glycoprotein synthesized in vascular endothelial cells as a pre-pro-polypeptide with a highly repetitive domain structure, symbolized by the formula:(H)-D1-D2-D'-D3-A1-A2-A3-D4-B1-B2-B3-C1-C2-(0H).A heterologous expression system, consisting of a monkey kidney cell line (C0S-1), transfected with full-length vWF cDNA, is shown to mimic the constitutively, secretory pathway of vWF in endothelial cells. The assembly of pro-vWF into multimers and the proteolytic processing of these structures is found to oro-ceed along the following, consecutive steps. Pro-vWF subunits associate to form dimers, a process that does not involve the pro-polypeptide of pro-vWF. This observation is derived from transfection of C0S-1 cells with vWF cDNA, lacking the genetic information encoding the pro-polypeptide, composed of the domains D1 and D2. Pro-vWF dimers are linked intracellularly to form a regular series of multimeric structures that are secreted and cannot be distinguished from those released constitutively by endothelial cells. The presence of the pro-polypeptide, embedded in pro-vWF, is obligatory for multimerization since the deletion mutant lacking the D1 and D2 domains fails to assemble beyond the dimer stage. It is argued that the D domains are involved in interchain interactions.

1992 ◽  
Vol 286 (2) ◽  
pp. 631-635 ◽  
Author(s):  
M A Carew ◽  
E M Paleolog ◽  
J D Pearson

Secretion of von Willebrand factor (vWf) glycoprotein from storage granules in human umbilical-vein endothelial cells was studied in vitro. Either elevation of intracellular Ca2+ concentration ([Ca2+]i) with a Ca2+ ionophore or activation of protein kinase (PK) C by phorbol 12-myristate 13-acetate caused vWf secretion, and together the agents acted synergistically. However, when vWf release was stimulated by receptor-mediated agonists, selective inhibition of PKC had no effect on histamine-induced secretion and significantly elevated thrombin-induced secretion. Furthermore, ATP, which efficiently elevates [Ca2+]i in these cells, was a very poor effector of vWf release. We conclude that elevation of [Ca2+]i by physiological agonists is necessary for vWf release, but other signalling mechanisms, as yet uncharacterized, but not due to PKC activation, are required for full induction of the secretory pathway.


1987 ◽  
Vol 133 (1) ◽  
pp. 79-87 ◽  
Author(s):  
Jan Hendrik Reinders ◽  
Richard C. Vervoorn ◽  
Cornelis L. Verweij ◽  
Jan A. Van Mourik ◽  
Philip G. De Groot

1986 ◽  
Vol 56 (02) ◽  
pp. 189-192 ◽  
Author(s):  
Pauline B van Wachem ◽  
Jan Hendrik Reinders ◽  
Marijke F van Buul-Wortelboer ◽  
Philip G de Groot ◽  
Willem G van Aken ◽  
...  

SummaryEndothelial cells were cultured from various human arteries and veins, obtained from adult individuals and from umbilical cords. We compared the storage and secretion of von Willebrand factor by endothelial cells from umbilical veins with that of endothelial cells cultured from a number of adult vessels, including aorta, arteria iliaca, vena saphena magna and vena cava. There were no differences in the way the cultured endothelial cells handled the von Willebrand factor they synthesized. Endothelial cells from the various vessels responded to stimuli in secreting stored von Willebrand factor. The cells also responded to thrombin and ionophore A23187 in producing enhanced amounts of prostacyclin. Thus, cultured umbilical vein endothelial cells have properties that are very similar to those of cultured endothelial cells of various other origins. It is concluded that foetal venous cells provide a representative model for studies of endothelial cell von Willebrand factor biosynthesis and prostacyclin production.


1987 ◽  
Vol 104 (5) ◽  
pp. 1423-1433 ◽  
Author(s):  
B M Ewenstein ◽  
M J Warhol ◽  
R I Handin ◽  
J S Pober

von Willebrand factor (VWF) is a large, adhesive glycoprotein that is biosynthesized and secreted by cultured endothelial cells (EC). Although these cells constitutively release VWF, they also contain a storage pool of this protein that can be rapidly mobilized. In this study, a dense organelle fraction was isolated from cultured umbilical vein endothelial cells by centrifugation on a self-generated Percoll gradient. Stimulation of EC by 4-phorbol 12-myristate 13-acetate (PMA) resulted in the disappearance of this organelle fraction and the synchronous loss of Weibel-Palade bodies as judged by immunoelectron microscopy. Electrophoretic and serologic analyses of biosynthetically labeled dense organelle fraction revealed that it is comprised almost exclusively of VWF and its cleaved pro sequence. These two polypeptides were similarly localized exclusively to Weibel-Palade bodies by ultrastructural immunocytochemistry. The identity of the dense organelle as the Weibel-Palade body was further established by direct morphological examination of the dense organelle fraction. The VWF derived from this organelle is distributed among unusually high molecular weight multimers composed of fully processed monomeric subunits and is rapidly and quantitatively secreted in unmodified form after PMA stimulation. These studies: establish that the Weibel-Palade body is the endothelial-specific storage organelle for regulated VWF secretion; demonstrate that in cultured EC, the VWF concentrated in secretory organelles is of unusually high molecular weight and that this material may be rapidly mobilized in unmodified form; imply that proteolytic processing of VWF involved in regulated secretion takes place after translocation to the secretory organelle; provide a basis for further studies of intracellular protein trafficking in EC.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 291-291 ◽  
Author(s):  
Ren-Huai Huang ◽  
Ying Wang ◽  
Robyn Roth ◽  
Xiong Yu ◽  
Angie R. Purvis ◽  
...  

Abstract Weibel-Palade bodies (WPBs) are elongated secretory granules of endothelial cells that are packed with tubules composed of von Willebrand factor (VWF), a multimeric protein required for hemostasis. Disruption of tubular packing prevents the orderly secretion of VWF multimers and blocks the subsequent binding of platelets. The cigar-like shape and tubular cross section of WPBs are conserved in all vertebrates, but little is known about how VWF specifies this packing arrangement. Starting from recombinant 82 kDa VWF propeptide (domains D1D2) and 114 kDa disulfide-bonded D’D3 dimer, we now have assembled tubules reversibly in vitro with the same dimensions as VWF tubules in WPBs. Assembly was induced at pH 6.2, reversed at pH 7.4, and required Ca2+. Recombinant D’D3 dimers did not self-associate at pH 7.4 or pH 6.2, with or without Ca2+. Without Ca2+, VWF propeptide did not bind to D’D3 dimers. At pH 7.4, with Ca2+, VWF propeptide formed noncovalent 160 kDa dimers and, when mixed with D’D3 dimers, assembled a 280 kDa complex of two propeptides and one D’D3 dimer as shown by gel filtration chromatography and multi-angle light scattering. Lowering the pH to 6.2 caused the formation of >3 MDa aggregates with the same stoichiometry, which dissociated upon adding EDTA or raising the pH to 7.4. Quick-freeze deep-etch EM showed that the large aggregates are hollow right-handed tubular helices. The iterative helical real space reconstruction method was used to make 3D reconstructions of the tubules at 22 Å resolution from negative stain EM images (Figure, left). Tubules consist of a right-handed helix with axial rise of 26.2 Å and twist of 85.6 degrees per subunit, or 4.2 subunits per 11 nm turn. The dimensions (outside diameter 25 nm, inside diameter 12 nm) are similar to those of tubules in WPBs in thin sections of endothelial cells by transmission EM (Figure, right and its insert). Each subunit contains one D’D3 dimer flanked by two D1D2 propeptides (Figure, center). Each D’D3 dimer makes a total of six contacts with D1D2 domains. Each D1D2 propeptide makes three contacts with D’D3 and just one end-to-end homotypic contact. The spatial arrangement of these building blocks and inter-domain contacts in tubules suggest a model by which decreasing pH along the secretory pathway coordinates the formation of intersubunit disulfide bonds with the tubular packaging of VWF multimers. Within the WPB, Ca2+-dependent and pH-dependent binding of D1D2 to D’D3 domains stabilizes the packing of VWF multimers into tubules, which behave as constrained springs. Upon secretion, the increased pH weakens these constraints and permits the helical tubules to unfurl into flowing blood without tangling. Figure Figure


2013 ◽  
Vol 11 (11) ◽  
pp. 2009-2019 ◽  
Author(s):  
M. J. Mourik ◽  
J. A. Valentijn ◽  
J. Voorberg ◽  
A. J. Koster ◽  
K. M. Valentijn ◽  
...  

1989 ◽  
Vol 108 (4) ◽  
pp. 1283-1289 ◽  
Author(s):  
L A Sporn ◽  
V J Marder ◽  
D D Wagner

von Willebrand factor (vWf) is secreted from endothelial cells by one of two pathways-a constitutive pathway and a regulated pathway originating from the Weibel-Palade bodies. The molecular form of vWf from each of these pathways differs, with the most biologically potent molecules being released from Weibel-Palade bodies (Loesberg, C., M. D. Gonsalves, J. Zandbergen, C. Willems, W. G. Van Aken, H. V. Stel, J. A. Van Mourik, and P. G. DeGroot. 1983. Biochim. Biophys. Acta. 763:160-168; Sporn, L. A., V. J. Marder, and D. D. Wagner. 1987. Cell. 46:185-190). We investigated the polarity of the two secretory pathways using human umbilical vein endothelial cells cultured on polycarbonate membrane filters which allowed sampling of media from both the apical and basolateral compartments. After metabolic labeling of cells, vWf (constitutively secreted during a 10-min period or released during a 10-min treatment with a secretagogue) was purified from the apical and basolateral chambers and subjected to gel analysis. Approximately equal amounts of vWf were constitutively secreted into both chambers, and therefore this secretory pathway appeared to be nonpolarized. On the contrary, an average of 90% of vWf released from Weibel-Palade bodies after treatment with the calcium ionophore A23187 or PMA appeared in the basolateral chamber, indicating that the regulated pathway of secretion is highly polarized. Thrombin, a secretagogue which promotes disruption of the endothelial monolayer, led to release of vWf from cells with no apparent polarity. The presence of microtubule-depolymerizing agents nocodazol and colchicine inhibited the polarized release of vWf. Ammonium chloride treatment did not disrupt the polarity of the regulated secretory pathway, indicating that maintenance of low pH in intracellular compartments was not required for the polarized delivery of preformed Weibel-Palade bodies to the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document