polycarbonate membrane
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 27)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Risvana Iqubal ◽  
Vimal Mathew ◽  
Kumar M. ◽  
Najiya Nasri K. V. ◽  
Safeetha Shamsudheen ◽  
...  

The poor penetration rate of the skin as a natural barrier makes transdermal drug delivery problematic. To increase transdermal dispersion of bioactives, electrophoresis, iontophoresis, chemical permeation enhancers, microneedles, sonophoresis, and vesicular systems such as liposomes, niosomes, elastic liposomes such as ethosomes, and transferosomes have all been used. Among these, transferosomes appear to be a promising option. Transferosomes are elastomeric or deformable vesicles that were originally discovered in the early 1990s. They're novel vesicular drug carrier system composed of phospholipid, surfactant, and water that improves transdermal drug delivery. Because of their low toxicity, biodegradability, ability to encapsulate both hydrophilic and lipophilic molecules, ability to prolong the drug's existence in the systemic circulation by encapsulation in vesicles, ability to target organs and tissues, and ability to reduce drug toxicity while increasing bioavailability, these vesicles are preferred over others. These vesicles undergo deformation, changes its shape and easily penetrates through the skin pores. There are two phases in any technique for preparing transferosomes. First, a thin film is hydrated before being sonicated to the required size; next, sonicated vesicles are homogenized by extrusion through a polycarbonate membrane. Transferosomes are evaluated for its entrapment efficiency, their drug content , in-vitro drug release, degree of deformability, turbidity, surface charge and morphology. Transferosomes are said to have a number of applications like delivery of vaccines,proteins, Anti-cancer drugs,anesthetics,herbal drugs and has better patient compliance,improved bio-availability and site-specific delivery and can serve as an emerging tool for transdermal delivery of almost all drugs and bio-actives.


Biosensors ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 347
Author(s):  
Gijung Kim ◽  
Min Chul Park ◽  
Seonae Jang ◽  
Daeyoung Han ◽  
Hojun Kim ◽  
...  

Extracellular vesicles (EVs) have emerged as novel biomarkers and therapeutic material. However, the small size (~200 nm) of EVs makes efficient separation challenging. Here, a physical/chemical stress-free separation of EVs based on diffusion through a nanoporous membrane chip is presented. A polycarbonate membrane with 200 nm pores, positioned between two chambers, functions as the size-selective filter. Using the chip, EVs from cell culture media and human serum were separated. The separated EVs were analyzed by nanoparticle tracking analysis (NTA), scanning electron microscopy, and immunoblotting. The experimental results proved the selective separation of EVs in cell culture media and human serum. Moreover, the diffusion-based separation showed a high yield of EVs in human serum compared to ultracentrifuge-based separation. The EV recovery rate analyzed from NTA data was 42% for cell culture media samples. We expect the developed method to be a potential tool for EV separation for diagnosis and therapy because it does not require complicated processes such as immune, chemical reaction, and external force and is scalable by increasing the nanoporous membrane size.


Author(s):  
Setlamorago Jackson Mbazima ◽  
Masilu Daniel Masekameni ◽  
Gill Nelson

Particulate matter (PM) of different sizes and elemental composition is a leading contributor to indoor and outdoor air pollution in residential areas. We sought to investigate similarities between indoor and outdoor PM2.5 in three residential areas near a ferromanganese smelter in Meyerton to apportion the emission source(s). Indoor and outdoor PM2.5 samples were collected concurrently, using GilAir300 plus samplers, at a flow rate of 2.75 L/min. PM2.5 was collected on polycarbonate membrane filters housed in 37 mm cassettes coupled with PM2.5 cyclones. Scanning electron microscopy coupled with energy-dispersive spectroscopy was used to study the morphology, and inductively coupled plasma-mass spectroscopy was used to analyse the elemental composition of the PM2.5. Mean indoor and outdoor PM2.5 mass concentrations were 10.99 and 24.95 µg/m3, respectively. Mean outdoor mass concentration was 2.27-fold higher than the indoor concentration. Indoor samples consisted of irregular and agglomerated particles, ranging from 0.09 to 1.06 µm, whereas outdoor samples consisted of irregular and spherical particles, ranging from 0.10 to 0.70 µm. Indoor and outdoor PM2.5 were dominated by manganese, silicon, and iron, however, outdoor PM2.5 had the highest concentration of all elements. The ferromanganese smelter was identified as the potential main contributing source of PM2.5 of different physicochemical properties.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4278
Author(s):  
Joanna Doskocz ◽  
Paulina Dałek ◽  
Magdalena Przybyło ◽  
Barbara Trzebicka ◽  
Aleksander Foryś ◽  
...  

Extrusion is a popular method for producing homogenous population of unilamellar liposomes. The technique relies on forcing a lipid suspension through cylindrical pores in a polycarbonate membrane. The quantification of the extrusion and/or recalibration processes make possible the acquisition of experimental data, which can be correlated with the mechanical properties of the lipid bilayer. In this work, the force needed for the extrusion process was correlated with the mechanical properties of a lipid bilayer derived from other experiments. Measurements were performed using a home-made dedicated device capable of maintaining a stable volumetric flux of a liposome suspension through well-defined pores and to continuously measure the extrusion force. Based on the obtained results, the correlation between the lipid bilayer bending rigidity and extrusion force was derived. Specifically, it was found that the bending rigidity of liposomes formed from well-defined lipid mixtures agrees with data obtained by others using flicker-noise spectroscopy or micromanipulation. The other issue addressed in the presented studies was the identification of molecular mechanisms leading to the formation of unilamellar vesicles in the extrusion process. Finally, it was demonstrated that during the extrusion, lipids are not exchanged between vesicles, i.e., vesicles can divide but no membrane fusion or lipid exchange between bilayers was detected.


2021 ◽  
Vol 11 (14) ◽  
pp. 6357
Author(s):  
Roberto Luigi Oliveri ◽  
Maria Grazia Insinga ◽  
Simone Pisana ◽  
Bernardo Patella ◽  
Giuseppe Aiello ◽  
...  

Lead-acid batteries are now widely used for energy storage, as result of an established and reliable technology. In the last decade, several studies have been carried out to improve the performance of this type of batteries, with the main objective to replace the conventional plates with innovative electrodes with improved stability, increased capacity and a larger active surface. Such studies ultimately aim to improve the kinetics of electrochemical conversion reactions at the electrode-solution interface and to guarantee a good electrical continuity during the repeated charge/discharge cycles. To achieve these objectives, our contribution focuses on the employment of nanostructured electrodes. In particular, we have obtained nanostructured electrodes in Pb and PbO2 through electrosynthesis in a template consisting of a nanoporous polycarbonate membrane. These electrodes are characterized by a wider active surface area, which allows for a better use of the active material, and for a consequent increased specific energy compared to traditional batteries. In this research, the performance of lead-acid batteries with nanostructured electrodes was studied at 10 C at temperatures of 25, −20 and 40 °C in order to evaluate the efficiency and the effect of temperature on electrode morphology. The batteries were assembled using both nanostructured electrodes and an AGM-type separator used in commercial batteries.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shu-Kuan Wong ◽  
Shotaro Suzuki ◽  
Yingshun Cui ◽  
Ryo Kaneko ◽  
Kazuhiro Kogure ◽  
...  

The sea surface microlayer (SML) is a thin surface film located at the interface between oceans and the atmosphere. In this study, three SML samplers—polycarbonate membrane (PC), glass plate (GP), and drum sampler (DS)—were used to collect microbiological DNA samples for molecular analysis. Among the three samplers, DS only took half the time to sample the SML compared to GP while PC were able to sample the thinnest SML depth. Biological matter and distinct bacterial communities in the SML were apparent during low wind conditions in samples collected by three samplers. Signs of biological matter [transparent exopolymer particles (TEP) and chlorophyll-a concentrations] depletion, and an increased similarity in the biological communities of the SML and underlying water (UW), were more pronounced during high wind speed conditions in samples collected by GP and DS. GP samples had lower biological matter enrichment than DS samples compared with UW. The depletion of biological matter in GP samples were more apparent during periods of high chl-a concentrations in the SML. In contrast, PC was able to consistently sample an SML community distinct from that of the UW, regardless of wind conditions. Bacterial community DNA samples obtained by the three SML samplers showed relatively consistent patterns of community structure, despite large fluctuations between seasons (summer vs. winter) and layers (SML vs. UW) being observed. Although no SML-specific taxon was detected in this study, a comparison of the representation of taxonomic groups in each sample suggested that certain taxa (15 orders) were specifically enriched or depleted in the SML, especially taxa belonging to Actinobacteria, Cyanobacteria, Deferribacteria, and Proteobacteria. This trend was consistent regardless of sampling method, implying that these bacterial groups are key taxa in the biogeochemical processes occurring at the air-sea interface.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2778
Author(s):  
Roberto Luigi Oliveri ◽  
Bernardo Patella ◽  
Floriana Di Pisa ◽  
Alfonso Mangione ◽  
Giuseppe Aiello ◽  
...  

The paper reports some preliminary results concerning the manufacturing process of CuZnSnSe (CZTSe) and CuInGaSe (CIGS) nanowire arrays obtained by one-step electrodeposition for p-n junction fabrication. CZTSe nanowires were obtained through electrodeposition in a polycarbonate membrane by applying a rectangular pulsed current, while their morphology was optimized by appropriately setting the potential and the electrolyte composition. The electrochemical parameters, including pH and composition of the solution, were optimized to obtain a mechanically stable array of nanowires. The samples were characterized by scanning electron microscopy, Raman spectroscopy, and energy-dispersion spectroscopy. The nanostructures obtained showed a cylindrical shape with an average diameter of about 230 nm and a length of about 3 µm, and were interconnected due to the morphology of the polycarbonate membrane. To create the p-n junctions, first a thin film of CZTSe was electrodeposited to avoid direct contact between the ZnS and Mo. Subsequently, an annealing process was carried out at 500 °C in a S atmosphere for 40 min. The ZnS was obtained by chemical bath deposition at 95 °C for 90 min. Finally, to complete the cell, ZnO and ZnO:Al layers were deposited by magnetron-sputtering.


2021 ◽  
Vol 2 (1) ◽  
pp. 59-68
Author(s):  
Briet D Bjarkadottir ◽  
Charlotte A Walker ◽  
Muhammad Fatum ◽  
Sheila Lane ◽  
Suzannah A Williams

In vitro follicle growth is a potential fertility preservation method for patients for whom current methods are contraindicated. Currently, this method has only been successful using fresh ovarian tissue. Since many patients who may benefit from this treatment currently have cryopreserved ovarian tissue in storage, optimising in vitro follicle growth (IVG) for cryopreserved-thawed tissue is critical. This study sought to improve the first step of IVG by comparing different short-term culture systems for cryopreserved-thawed human ovarian tissue, in order to yield a higher number of healthy multilayer follicles. We compared two commonly used culture media (αMEM and McCoy’s 5A), and three plate conditions (300 µL, 1 mL on a polycarbonate membrane and 1 mL in a gas-permeable plate) on the health and development of follicles after 6 days of culture. A total of 5797 follicles from three post-pubertal patients (aged 21.3 ± 2.3 years) were analysed across six different culture conditions and non-cultured control. All culture systems supported follicle development and there was no difference in developmental progression between the different conditions tested. Differences in follicle morphology were evident with follicles cultured in low volume conditions having significantly greater odds of being graded as morphologically normal compared to other conditions. Furthermore, culture in a low volume of αMEM resulted in the highest proportion of morphologically normal primary and multilayer follicles (23.8% compared to 6.3-19.9% depending on condition). We, therefore, recommend culturing cryopreserved human ovarian tissue in a low volume of αMEM to support follicle health and development. Lay summary Ovaries contain a large number of follicles, each containing an immature egg and other important cells. Cancer treatments can lead to long-lasting negative side effects to the ovaries including the destruction of follicles, resulting in infertility. One strategy to preserve fertility is freezing of ovaries or ovarian tissue in girls and women undergoing cancer treatment. The long-term aim is to thaw and grow their ovarian tissue in the laboratory to obtain mature eggs, which can then be fertilised. In this study, we compared six different methods of growing previously frozen human ovarian tissue in order to best support follicle growth and health. We found that using the lowest amount of αMEM medium (a specific type of nutrient-rich growth solution) resulted in the highest proportion of healthy follicles. Improving the methods used to grow ovarian tissue, particularly frozen tissue, is important for future fertility preservation.


Sign in / Sign up

Export Citation Format

Share Document