glycogen particles
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 6)

H-INDEX

22
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Joachim Nielsen ◽  
Peter Dubillot ◽  
Marie-Louise Holleufer Stausholm ◽  
Niels Ortenblad

Glycogen is a key energy substrate in excitable tissue and especially in skeletal muscle fibers it contributes with a substantial, but also local energy production. A heterogenic subcellular distribution of three distinct glycogen pools in skeletal muscle is proved by transmission electron microscopy (TEM), which is thought to represent the requirements for local energy stores at the subcellular level. Here, we show that the three main energy-consuming ATPases in skeletal muscles (Ca2+-, Na+,K+-, and myosin ATPases) utilize different local pools of glycogen. These results clearly demonstrate compartmentalized glycogen metabolism and emphasize that spatially distinct pools of glycogen particles act as energy substrate for separated energy requiring processes, suggesting a new paradigm for understanding glycogen metabolism in working muscles, muscle fatigue and metabolic disorders.


2021 ◽  
pp. 0271678X2110273
Author(s):  
Eleonora Napoli ◽  
Alexios A Panoutsopoulos ◽  
Patricia Kysar ◽  
Nathaniel Satriya ◽  
Kira Sterling ◽  
...  

Autophagy is essential to cell function, as it enables the recycling of intracellular constituents during starvation and in addition functions as a quality control mechanism by eliminating spent organelles and proteins that could cause cellular damage if not properly removed. Recently, we reported on Wdfy3’s role in mitophagy, a clinically relevant macroautophagic scaffold protein that is linked to intellectual disability, neurodevelopmental delay, and autism spectrum disorder. In this study, we confirm our previous report that Wdfy3 haploinsufficiency in mice results in decreased mitophagy with accumulation of mitochondria with altered morphology, but expanding on that observation, we also note decreased mitochondrial localization at synaptic terminals and decreased synaptic density, which may contribute to altered synaptic plasticity. These changes are accompanied by defective elimination of glycogen particles and a shift to increased glycogen synthesis over glycogenolysis and glycophagy. This imbalance leads to an age-dependent higher incidence of brain glycogen deposits with cerebellar hypoplasia. Our results support and further extend Wdfy3’s role in modulating both brain bioenergetics and synaptic plasticity by including glycogen as a target of macroautophagic degradation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qing-Hua Liu ◽  
Jia-Wei Tang ◽  
Peng-Bo Wen ◽  
Meng-Meng Wang ◽  
Xiao Zhang ◽  
...  

Glycogen is a highly-branched polysaccharide that is widely distributed across the three life domains. It has versatile functions in physiological activities such as energy reserve, osmotic regulation, blood glucose homeostasis, and pH maintenance. Recent research also confirms that glycogen plays important roles in longevity and cognition. Intrinsically, glycogen function is determined by its structure that has been intensively studied for many years. The recent association of glycogen α-particle fragility with diabetic conditions further strengthens the importance of glycogen structure in its function. By using improved glycogen extraction procedures and a series of advanced analytical techniques, the fine molecular structure of glycogen particles in human beings and several model organisms such as Escherichia coli, Caenorhabditis elegans, Mus musculus, and Rat rattus have been characterized. However, there are still many unknowns about the assembly mechanisms of glycogen particles, the dynamic changes of glycogen structures, and the composition of glycogen associated proteins (glycogen proteome). In this review, we explored the recent progresses in glycogen studies with a focus on the structure of glycogen particles, which may not only provide insights into glycogen functions, but also facilitate the discovery of novel drug targets for the treatment of diabetes mellitus.


2021 ◽  
Author(s):  
James F. Pelletier ◽  
Christine M. Field ◽  
Margaret Coughlin ◽  
Lillia Ryazanova ◽  
Matthew Sonnett ◽  
...  

Crowding increases the tendency of macromolecules to aggregate and phase separate, and high crowding can induce glass-like states of cytoplasm. To explore the effect of crowding in a well-characterized model cytoplasm we developed methods to selectively concentrate components larger than 25 kDa from Xenopus egg extracts. When crowding was increased 1.4x, the egg cytoplasm demixed into two liquid phases of approximately equal volume. One of the phases was highly enriched in glycogen while the other had a higher protein concentration. Glycogen hydrolysis blocked or reversed demixing. Quantitative proteomics showed that the glycogen phase was enriched in proteins that bind glycogen, participate in carbohydrate metabolism, or are in complexes with especially high native molecular weight. The glycogen phase was depleted of ribosomes, ER and mitochondria. These results inform on the physical nature of a glycogen-rich cytoplasm and suggest a role of demixing in the localization of glycogen particles in tissue cells.


2021 ◽  
Author(s):  
Rasmus Jensen ◽  
Niels Ørtenblad ◽  
Marie‐Louise H. Stausholm ◽  
Mette C. Skjærbæk ◽  
Daniel N. Larsen ◽  
...  

2021 ◽  
Author(s):  
Yiming Hu ◽  
Cheng Li ◽  
Yingyong Hou

Liver glycogen α particles in diabetic patients are fragile relative to those in healthy individuals, and restoring these fragile glycogen particles to a normal state shows potential to contribute to...


2015 ◽  
Vol 35 (6) ◽  
pp. 951-958 ◽  
Author(s):  
Robert Fern

In isolated white matter, ischemic tolerance changes dramatically in the period immediately before the onset of myelination. In the absence of an extrinsic energy source, postnatal day 0 to 2 (P0 to P2) white matter axons are here shown to maintain excitability for over twice as long as axons > P2, a differential that was dependent on glycogen metabolism. Prolonged withdrawal of extrinsic energy supply tended to spare axons in zones around astrocytes, which are shown to be the sole repository for glycogen particles in developing white matter. Analysis of mitochondrial volume fraction revealed that neither axons nor astrocytes had a low metabolic rate in neonatal white matter, while oligodendroglia at older ages had an elevated metabolism. The astrocyte population is established early in neural development, and exhibits reduced cell density as maturation progresses and white matter expands. The findings show that this event establishes the necessary conditions for ischemia sensitivity in white matter and indicates that astrocyte proximity may be significant for the survival of neuronal elements in conditions associated with compromised energy supply.


2012 ◽  
Vol 302 (11) ◽  
pp. E1343-E1351 ◽  
Author(s):  
Andrew Philp ◽  
Mark Hargreaves ◽  
Keith Baar

The glycogen content of muscle determines not only our capacity for exercise but also the signaling events that occur in response to exercise. The result of the shift in signaling is that frequent training in a low-glycogen state results in improved fat oxidation during steady-state submaximal exercise. This review will discuss how the amount or localization of glycogen particles can directly or indirectly result in this differential response to training. The key direct effect discussed is carbohydrate binding, whereas the indirect effects include the metabolic shift toward fat oxidation, the increase in catecholamines, and osmotic stress. Although our understanding of the role of glycogen in response to training has expanded exponentially over the past 5 years, there are still many questions remaining as to how stored carbohydrate affects the muscular adaptation to exercise.


2011 ◽  
Vol 56 (4) ◽  
Author(s):  
Zdzisław Świderski ◽  
David Gibson ◽  
Adji Marigo ◽  
Eulàlia Delgado ◽  
Jordi Torres ◽  
...  

AbstractVitellogenesis and vitellocytes of the bothriocephalidean cestode Clestobothrium crassiceps (Rudolphi, 1819), a parasite of the teleost fish Merluccius merluccius (L., 1758), were studied by means of transmission electron microscopy (TEM) and cytochemistry. During vitellogenesis, four developmental stages were distinguished at the TEM level: (I) a stem cell stage of the gonial type; (II) an early differentiation stage, predominantly exhibiting lipid and protein synthetic activity; (III) an advanced differentiation or vitellocyte maturation stage, primarily exhibiting active glycogenesis still accompanied by an increase in lipid accumulation; and (IV) a mature vitellocyte stage. Vitellogenesis involves: (1) an increase in cell volume; (2) an extensive development of parallel, frequently concentrically arranged, cisternae of granular endoplasmic reticulum (GER) that produce dense, proteinaceous shell-gobules; (3) the development of Golgi complexes engaged in the packaging of this material; (4) an accelerated accumulation of unsaturated and saturated lipid droplets, along with their continuous enlargement and fusion; (5) the formation of individual β-glycogen particles and α-glycogen rosettes and their accumulation in the form of glycogen islands scattered among lipid droplets in the cytoplasm of maturing and mature vitellocytes; and (6) the rapid accumulation of large, saturated lipid droplets accompanied by dense accumulations of α- and β-glycogen along with proteinaceous shell-globules or shell-globule clusters in the peripheral layer during the advanced stage of vitellocyte maturation. Vitellogenesis in C. crassiceps generally resembles that previously described for three other bothriocephalideans, but differs from that of other cestode orders. Cytochemical staining with periodic acid-thiocarbazide-silver proteinate for glycogen indicates a strongly positive reaction for β-glycogen particles and α-glycogen rosettes, which form several large glycogen accumulations around the large, saturated lipid droplets of maturing and mature vitellocytes. Some hypotheses concerning the interrelationships between patterns of vitellogenesis, the possible modes of egg formation, embryonic development and life cycles in cestodes, and their phylogenetic implications are commented upon.


2011 ◽  
Vol 56 (1) ◽  
Author(s):  
Daniel Młocicki ◽  
Zdzisław Świderski ◽  
John Mackiewicz ◽  
Mohammed Ibraheem

AbstractUltrastructural and cytochemical characteristics of GER-bodies observed in the vitellocyte cytoplasm of the intrauterine eggs of the caryophyllidean cestode Wenyonia virilis are described. In this species GER-bodies were observed only in the cytoplasm of vitellocytes, surrounded by a newly formed egg-shell. They are composed of spherical areas of condensed, electron-dense cytoplasm which contains concentrically arranged parallel lamellae of granular endoplasmic reticulum (GER), forming characteristic balls of different sizes. Each GER-body is surrounded by numerous free ribosomes, polyribosomes, α-glycogen rosettes and large mitochondria. Results of cytochemical analysis by means of PATSC-SP test for polysaccharides indicated that glycogen is absent within the GER-bodies, however, a strongly positive reaction was observed only in large aggregations of α-glycogen rosettes and β-glycogen particles, localised usually near GER-bodies.


Sign in / Sign up

Export Citation Format

Share Document