Mutations which Introduce Free Cysteine Residues in the Gla-Domain of Vitamin K Dependent Proteins Result in the Formation of Complexes with α1-Microglobulin

1996 ◽  
Vol 75 (01) ◽  
pp. 070-075 ◽  
Author(s):  
E G C Wojcik ◽  
P Simioni ◽  
M v d Berg ◽  
A Girolami ◽  
R M Bertina

SummaryWe have previously described a genetic factor IX variant (Cys18→Arg) for which we demonstrated that it had formed a heterodimer with armicroglobulin through formation of a disulphide bond with the remaining free cysteine residue of the disrupted disulphide bond in the Gla-domain of factor IX. Recently, we observed a similar high molecular weight complex for a genetic protein C variant (Arg-1→Cys). Both the factor IX and the protein C variants have a defect in the calcium induced conformation. In this study we show that the aminoterminus of this protein C variant is prolonged with one amino acid, cysteine. This protein C variant, as well as protein C variants with Arg9→Cys and Ser12→Cys mutations which also carry a free cysteine residue, are shown to be present in plasma as a complex with α1-microglobulin. A prothrombin variant with a Tyr44→Cys mutation, had not formed such a complex. Furthermore, complexes between normal vitamin K-dependent clotting factors and α1-microglobulin were shown to be present in plasma at low concentrations. The data suggest that the presence of an unpaired cysteine residue in the propeptide or the N-terminal half of the Gla-domain has strongly promoted the formation of a complex with α1-microglobulin in the variants.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 331-331
Author(s):  
Prosenjit Sen ◽  
Sanghamitra Sahoo ◽  
Usha Pendurthi ◽  
L. Vijaya Mohan Rao

Abstract Abstract 331 Introduction/background: Zinc is a multi-functional element that is essential for life and the second most abundant metal ion, after iron in eukaryotic organisms. Zinc deficiency has been associated with bleeding disorders and with defective platelet aggregation, suggesting it may play an important role in hemostasis. Zinc ions have been shown to enhance activation of the intrinsic pathway of coagulation but to down-regulate the extrinsic pathway of coagulation. All vitamin K-dependent coagulation proteins have calcium binding sites and may therefore to some extent, interact with other divalent metal ions, including zinc, through these sites. Recent crystallography studies identified a pair of Zn2+ binding sites in FVIIa protease domain, and with the exception of Glu220, all the side chains involved in both the Zn1 and Zn2 coordination in FVIIa are unique to FVIIa and are not present in other vitamin K-dependent clotting factors (Bajaj et al., J Biol Chem 2006; 281:24873-88). Nonetheless, Zn2+ may bind to other vitamin K-dependent clotting factors at sites different from those identified in FVIIa. Objective: The aim of the present study is to investigate the effect of zinc ions on the protein C pathway, particularly on protein C/APC binding to EPCR, protein C activation and APC catalytic activity. Methods: Protein C and APC binding to EPCR on endothelial cells was examined by radioligand binding studies. Protein C activation and APC catalytic activity were evaluated in chromogenic assays. Equilibrium dialysis was used to measure zinc binding to protein C/APC. Conformational changes in protein C/APC were monitored by intrinsic fluorescence quenching. Results: Zn2+ does not replace the Ca2+ as a mandatory cofactor for protein C/APC binding to EPCR but Zn2+ at physiologically relevant concentrations (10 to 25 μM) markedly increased Ca2+-dependent protein C and APC binding to EPCR (∼2 to 5-fold). The kinetic analysis of protein C and APC binding to EPCR suggested that Zn2+ enhanced protein C/APC binding to EPCR by increasing the binding affinity of protein C/APC to its receptor (Kd for APC: – Zn2+, 117 ± 27 nM; + Zn2+, 9.3 ± 3.3 nM; Kd, for protein C: – Zn2+, 96 ± 26 nM; + Zn2+, 21.4 ± 6.6 nM). The enhancing effect of Zn2+ on APC binding to EPCR was also observed in the presence of physiological concentrations of Mg2+, which itself increased the APC binding to EPCR, two-fold. Zn2+-mediated increased protein C binding to EPCR resulted in increased APC generation. The effect of Zn2+ was not limited to enhancing protein C and APC binding to EPCR but also affected the catalytic activity of APC. Zn2+ inhibited the amidolytic activity of APC half-maximally at 50 to 100 μM. Zn2+ also inhibited the amidolytic activity of Gla domain deleted (GD)-APC in a similar fashion. The inhibitory effect of Zn2+ was partially reversed by physiological concentrations of calcium. Addition of Zn2+ to protein C or APC quenched the intrinsic fluorescence of both APC and GD-APC. Data from the equilibrium binding studies performed with 65Zn2+ revealed that Zn2+ binds to both GD-APC and APC, but that the amount of Zn2+ bound to APC was 3 to 4-fold higher than the amount bound to GD-APC. Kinetic analysis of equilibrium binding studies suggested that two Zn2+ atoms bind to APC outside the Gla domain with relatively high affinity (∼70 μM). At least one of the Zn2+ sites may overlap with the Ca2+ binding site as the Zn2+ binding to GD-APC was inhibited by approximately 50% by saturating concentrations of Ca2+. The substantially increased Zn2+ binding to the APC compared to GD-APC suggested that the N-terminus of the Gla domain of protein C contains multiple Zn2+ binding sites. Interestingly, Zn2+ bound to APC and GD-APC with a similar high affinity suggesting that the Gla domain, as well as the protease domain, may contain high affinity binding sites for Zn2+. A majority of the Zn2+ binding sites in the Gla domain appear to be distinct from the Ca2+ binding sites as less than 40% of the maximal Zn2+ binding could be blocked by Ca2+. The putative zinc binding sites in protein C/APC appeared to be unique as no consensus canonical zinc binding sequences homologous to other known zinc binding proteins were found in protein C. Conclusions: Our present data show that Zn2+ binds to protein C/APC and induces a conformational change in these proteins, which in turn leads to higher affinity binding to their cellular receptor EPCR. Overall our results suggest that zinc ions may play an important regulatory role in the protein C pathway. Disclosures: No relevant conflicts of interest to declare.


1995 ◽  
Vol 311 (3) ◽  
pp. 753-759 ◽  
Author(s):  
E G C Wojcik ◽  
M van den Berg ◽  
I K van der Linden ◽  
S R Poort ◽  
R Cupers ◽  
...  

Factor IX Zutphen is a variant factor IX molecule isolated from the blood of a patient with severe haemophilia B. The molecular defect in factor IX Zutphen is a Cys18-->Arg mutation as a result of a T-->C transition at residue 6427 of the factor IX gene of the patient. The mutation disrupts the disulphide bond in the Gla-domain between Cys18 and Cys23. The remaining free cysteine residue results in the formation of a 95 kDa complex with alpha 1-microglobulin through an intermolecular disulphide bond. The same complex circulates at high levels in plasma of carriers of the mutation. The variant molecule has a calcium-binding defect, which is shown not to be caused by incomplete gamma-carboxylation. Factor IX Zutphen can not bind to phospholipids and can not be activated by factor XIa or by factor VIIa-tissue factor complex. Two sequential metal ion-dependent conformational transitions (factor IX-->factor IX′-->factor IX*) have been proposed for human factor IX [Liebman (1987) J. Biol. Chem. 262, 7605-7612], based upon the metal ion requirements for binding to anti-factor IX:Mg(II) antibodies, which are specific for the factor IX′ conformation, and anti-factor IX:Ca(II) antibodies, which are specific for the factor IX* conformation. We used these conformation-specific antibodies, and antibodies raised against a synthetic peptide corresponding to residues 35-50 of human factor IX [anti-factor IX(35-50)] to study the metal ion-induced conformation of factor IX Zutphen. The disruption of the disulphide bond in the Gla-domain, maybe in combination with the complex with alpha 1-microglobulin, destabilized the factor IX′ conformation. The formation of the factor IX* conformation was prevented independent of the presence of alpha 1-microglobulin. The disulphide bond in the Gla-domain is therefore essential for the calcium-dependent conformation and function of factor IX.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1172-1172
Author(s):  
Kanagasabai Vadivel ◽  
Sayeh Agah ◽  
Amanda S. Messer ◽  
Duilio Cascio ◽  
Madhu S Bajaj ◽  
...  

Abstract Abstract 1172 Equilibrium dialysis experiments indicate that the Gla domain of coagulant protein factor (F) VIIa and of anticoagulant protein C (PC) each bind seven Ca2+ in the absence and four in the presence of physiologic Mg2+ (0.6 mM). The previous x-ray structure of FVIIa/soluble (s) tissue factor (TF) in the presence of 5 mM Ca2+/45 mM Mg2+ (5Ca/45Mg) (Bajaj et al., J Biol Chem, 281, 24873–24888, 2006) revealed that sites 2,3,5 and 6 were occupied by Ca2+ while sites 1, 4 and 7 contained Mg2+ (Tulinsky numbering, Biochemistry 31, 2554–2566, 1992). Since these concentrations of metal ions were supraphysiologic, we sought to obtain crystals under concentrations of Ca2+ and Mg2+ approaching those found in blood. We have solved the structures of FVIIa/sTF under three new conditions: 2.5 mM Ca2+/1.25 mM Mg2+ at 2.8 Å (2.5Ca/1.25Mg); 5 mM Ca2+/2.5 mM Mg2+ at 1.8 Å (5Ca/2.5Mg); and 45 mM Ca2+/5 mM Mg2+ at 1.7 Å (45Ca/5Mg). For 2.5Ca/1.25Mg, the Gla domain of FVIIa was disordered indicating insufficient concentrations of Ca2+/Mg2+ to fold the Gla domain. Interestingly, folding of the Ω-loop for 5Ca/2.5Mg was similar to that reported under 5Ca/45Mg, with identical positions for four Ca2+ and three Mg2+. In contrast, while the folding of the Ω-loop at 45Ca/5Mg was similar to that reported only in the presence of Ca2+ (Banner et al., Nature, 380, 41–46,1996); however, positions 1 and 7 contained Mg2+ (Fig. 1A). Thus, it would appear that four Ca2+ and three Mg2+ ions are bound to the circulating FVII/FVIIa. Moreover, circulating FVII/FVIIa will need high Ca2+ concentrations to have its position four switched from Mg2+ to Ca2+.Fig. 1.A) The superimposed structures of FVIIa Gla domains from 5Ca/2.5Mg (1.8 Å) and 45Ca/5Mg (1.7 Å) showing differences in the Ω-loops. B) The superimposed structures of Gla domain in FVIIa (45Ca/5Mg) and in 5Ca/5Mg PC-EPCR (1.6 Å) showing similar Ω-loop conformations.Fig. 1. A) The superimposed structures of FVIIa Gla domains from 5Ca/2.5Mg (1.8 Å) and 45Ca/5Mg (1.7 Å) showing differences in the Ω-loops. B) The superimposed structures of Gla domain in FVIIa (45Ca/5Mg) and in 5Ca/5Mg PC-EPCR (1.6 Å) showing similar Ω-loop conformations. All seven metal sites in the structure of PC-Gla complexed to endothelial protein C receptor (EPCR) had been refined with Ca2+ despite the presence of 5 mM Ca2+ and 5 mM Mg2+ in the crystallization buffer (Oganesyan et al., J Biol Chem, 277, 24851–24854, 2002). Based on our findings with VIIa/sTF, we revisited the PC-Gla/EPCR structure. We determined that positions 1 and 7 are Mg2+ sites while 2, 3, 4, 5 and 6 are Ca2+ sites in the PC-Gla/EPCR structure (Fig. 1B). This contrasts to four Ca2+ and three Mg2+ bound to VIIa/TF at 5Ca/2.5Mg. Since five Ca2+ and two Mg2+ were seen in VIIa/sTF at 45Ca/5Mg, it would appear that position 4 can accommodate either Ca2+ or Mg2+ depending upon conditions. We propose that at near physiologic Ca2+ and Mg2+, ligation of the Gla domain with EPCR and possibly phospholipid (PL) membranes facilitates substitution of the Mg2+ bound at the position four with Ca2+. This metal switch may be essential to achieve a favorable conformation of the Gla domain Ω-loop for optimal ligand of PL binding. Mg2+ also enhanced the Ca2+-dependent interaction of FVIIa or activated protein C (APC) to PL assessed by surface plasmon resonance. Binding of FVIIa and APC each was saturated by the physiological concentration of Ca2+ (1.1 mM) in the presence of physiological Mg2+ (0.6 mM). In contrast, only half-saturable binding was observed at the physiological concentration of Ca2+ in the absence of Mg2+. Further, 0.6 mM Mg2+ potentiated (∼2.5-fold) the PL-dependent activation of FX by FVIIa/TF at 1.1 mM Ca2+. Similarly, Mg2+ potentiated (∼3-fold) the activation of FX by FVIIa/TF assembled on the endotoxin-stimulated monocyte surface. PL-dependent inactivation of FVa by APC was also enhanced ∼3-fold by 0.6 mM Mg2+ at 1.1 mM Ca2+. At saturating Ca2+ (5 mM), the activation of FX by FVIIa/TF or the inactivation of FVa by APC was similar to that with 1.1 mM Ca2+/0.6 mM Mg2+. Thus Mg2+ at physiologic concentrations augments PL- or natural membrane-dependent coagulation and anticoagulation at the plasma concentration of Ca2+. We propose that vitamin K-dependent clotting and anti-clotting proteins circulate in blood with four Ca2+ ions bound. The remaining three (or more in FIX and FX) divalent metal binding sites in each Gla domain are occupied by Mg2+. The conformation of the Ω-loop in circulating vitamin K- dependent proteins is not favorable for binding to PL but it is achieved by switching Mg2+ at position four to Ca2+. Thus, the metal ion at position four regulates PL-dependent coagulation and anticoagulation reactions. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 24 (9_suppl) ◽  
pp. 42S-47S ◽  
Author(s):  
Antonio Girolami ◽  
Silvia Ferrari ◽  
Elisabetta Cosi ◽  
Claudia Santarossa ◽  
Maria Luigia Randi

Vitamin K-dependent clotting factors are commonly divided into prohemorrhagic (FII, FVII, FIX, and FX) and antithrombotic (protein C and protein S). Furthermore, another protein (protein Z) does not seem strictly correlated with blood clotting. As a consequence of this assumption, vitamin K-dependent defects were considered as hemorrhagic or thrombotic disorders. Recent clinical observations, and especially, recent advances in molecular biology investigations, have demonstrated that this was incorrect. In 2009, it was demonstrated that the mutation Arg338Leu in exon 8 of FIX was associated with the appearance of a thrombophilic state and venous thrombosis. The defect was characterized by a 10-fold increased activity in FIX activity, while FIX antigen was only slightly increased (FIX Padua). On the other hand, it was noted on clinical grounds that the thrombosis, mainly venous, was present in about 2% to 3% of patients with FVII deficiency. It was subsequently demonstrated that 2 mutations in FVII, namely, Arg304Gln and Ala294Val, were particularly affected. Both these mutations are type 2 defects, namely, they show low activity but normal or near-normal FVII antigen. More recently, in 2011-2012, it was noted that prothrombin defects due to mutations of Arg596 to Leu, Gln, or Trp in exon 15 cause the appearance of a dysprothrombinemia that shows no bleeding tendency but instead a prothrombotic state with venous thrombosis. On the contrary, no abnormality of protein C or protein S has been shown to be associated with bleeding rather than with thrombosis. These studies have considerably widened the spectrum and significance of blood coagulation studies.


1987 ◽  
Author(s):  
K L Berkner ◽  
S J Busby ◽  
J Gambee ◽  
A Kumar

The vitamin K-dependent plasma proteins demonstrate remarkable similarities in their structures: all have multiple domains in common and extensive homology is observed within many of these domains. In order to investigate the structure-function relationship of these proteins, we have interchanged domains of one protein (factor IX) with that of another (factor VII) and have compared the expression of these fusion proteins with recombinant and native factors IX and VII. Oligonucleotide-directed mutagenesis was used to generate four fusion proteins: factor IX/VII-1, which contains the factor IX leader and gla domain fused to the growth factor and serine protease of factor VII; factor VII/IX-1, a reciprocal fusion protein of factor IX/VII-1; factor IX/VII-2, which contains the factor IX leader adjoined to the mature factor VII protein sequence; and factor VII/IX-2, the reciprocal fusion protein of factor IX/VII-2. The cDNAs encoding all four proteins were cloned into mammalian expression vectors, and to date three of these (factors IX/VII-1, 2 and VII/IX-1) have been transfected into baby hamster kidney (BHK) cells or 293 cells and characterized. Factors IX/VII-1 and VII/IX-1 were both secreted at levels comparable to recombinant factors IX and VII. The factor IX/VII-1 was identical in molecular weight to native or recombinant factor VII (i.e., 53 K). Factor VII/IX-1 was expressed as two proteins with molecular weights around 68 kd, as observed with recombinant factor IX. The factor IX/VII-1 protein has been purified to homogeneity and has been found to possess factor VII biological activity, but at a specific activity approximately 20% that of plasma factor VII. Thus, the gla domain of one clotting factor is capable of directing the activation of another and of generating biologically active protein. In contrast, no activity was observed with the factor IX/VII-2 fusion protein, indicating that there are limits to the interchanges which can generate functional blood clotting factors.


1987 ◽  
Author(s):  
A D'Angelo ◽  
F Gilardoni ◽  
M P Seveso ◽  
P Poli ◽  
R Quintavalle ◽  
...  

Isolated deficiencies of protein C and protein S, two vitamin K-dependent plasma proteins, constitute about 70% of the congenital abnormalities of blood coagulation observed in patients with recurrent venous thrombosis beLow the age of 40. The laboratory diagnosis of congenital deficiency of these proteins represents a major problem since a large proportion of patients are on oral anticoagulation (OA) at the time the deficiencies are suspected.Under these circumstances the availability of a reference interval obtained in patients on stabilized OA has proven useful.Functional (C) and antigenic levels (Ag) of protein C, protein S, factor IX and II were estimated in 136 patients on stabilized OA, subdivided according to the degree of anticoagulation (Internatio nal Normalized Ratio, INR).The results indicate that with increasing anticoagulation the activity levels of all the vitamin K-dependent factors decrease to a greater extent than the corresponding antigenic levels. At variance with the other factors, total protein S antigen levels are only moderately reduced by OA with protein S anticoagulant activi ty comparing well to factor IX clotting activity. These data suggest the possibility of identifying both quantitative and qualita tive deficiencies of protein C and protein S in patients on oral anticoagulant treatment.


2017 ◽  
Vol 44 (02) ◽  
pp. 176-184 ◽  
Author(s):  
Björn Dahlbäck

AbstractProtein S is a vitamin K–dependent plasma glycoprotein circulating in plasma at a concentration of around 350 nM. Approximately 60% of protein S in human plasma is bound to the complement regulatory protein C4b-binding protein (C4BP) in a high-affinity, high-molecular-weight complex. Protein S in plasma has multiple anticoagulant properties and heterozygous protein S deficiency is associated with increased risk of venous thrombosis. Homozygous deficiency in man and mice is associated with severe thrombosis in fetal life, defects in the vascular system development, and not compatible with life. Protein S has additional functions beyond being an anticoagulant. It affects the complement regulatory properties of C4BP, and moreover, protein S interacts with tyrosine kinase receptors of the TAM family, which comprises Tyro3, Axl, and Mer. The TAM receptor interaction is important for the ability of protein S to stimulate phagocytosis of apoptotic cells. This review will discuss the multiple functions of protein S, describing its role as cofactor to activated protein C with a subsequent focus on the other functions of protein S.


Haemophilia ◽  
2008 ◽  
Vol 14 (5) ◽  
pp. 1063-1068 ◽  
Author(s):  
M. BLOSTEIN ◽  
J. CUERQUIS ◽  
S. LANDRY ◽  
J. GALIPEAU

1987 ◽  
Author(s):  
S R Poort ◽  
C Krommenhoek-van Es ◽  
I K van der Linden ◽  
N H van Tilburg ◽  
R M Bertina

Vitamin K-dependent (anti)coagulation factors (factor II, VII, IX, X protein C and S) undergo a conformational transition upon binding of Ca(II), which is a prerequisite for their normal function. Abnormalities in these properties occur during vitamin K deficiency or treatment with anti vitamin K drugs and in some genetic variants of coagulation factors. Immunological assays utilizing antibodies against the Ca(II)-stabilized structure are useful to detect such abnormalities.Starting from specific rabbit antisera antibody populations specific for the Ca(II)-dependent conformation of factor II, VII, IX, X and protein C and S were isolated using immuno-affinity procedures. Subsequently immunoradiometric assays specific for the Ca(II)-dependent (Ca(II)Ag) and Ca(II)-independent (NonCa(II)Ag) conformations of the different proteins were developed. These assays were used for the analysis of plasmas of patients stably treated with oral anticoagulants; Ca(II)Ag, NonCa(II)Ag and their ratio were measured as function of the intensity of the treatment (INR 2.4 to 4.8). The same parameters were measured in plasmas of patients with hereditary coagulation disorders. After treatment with oral anticoagulation with an antivitamin K drug reduced ratios of Ca(II)Ag/-NonCa(II)Ag were observed for factor II, VII, IX, protein C and protein S. However, the actual degree of reduction and its dependence on the intensity of treatment varied for the different vitamin K-dependent proteins. In general Ca(II)Ag levels correspond nicely with the procoagulant activity of the concerning proteins. These data provide indirect evidence for the existence of abnormal (non and/or subcarboxylated) forms of the vitamin K-dependent proteins during oral anticoagulant treatment.Genetic variants with a mutation in one of the sites involved in the formation of the Ca(II)-s tab i1ized structure could be detected for factor IX, factor VII and factor II. However, the extent of reduction of the ratio Ca(II)Ag/-NonCa(II)Ag differed considerably in those variants.


Sign in / Sign up

Export Citation Format

Share Document