Mechanism of Potentiation by Manganese Ion of Aggregation of Porcine Pancreatic Elastase-Treated Human Platelets

1989 ◽  
Vol 62 (03) ◽  
pp. 984-988 ◽  
Author(s):  
Hiroyuki Azuma ◽  
Toshio Shigekiyo ◽  
Shinji Miura ◽  
Yuka Uno ◽  
Shiro Saito

SummaryThe effect of manganese ion (Mn2+) on the aggregation of porcine pancreatic elastase-treated platelets (ETP) induced by fibrinogen (Fbg) was studied. Mn2+ enhanced the aggregation of ETP on addition of Fbg specifically and dose-dependently. This effect of Mn2+ was not associated with the formation of thromboxane A2, and was not affected by pretreatment of ETP with acetylsalicylic acid in the presence of Mn2+. Moreover, it was not dependent on extracellular adenosine diphosphate, as shown by removal of extracellular adenosine diphosphate by pretreatment of ETP with creatine phosphate/creatine phosphokinase. Studies on the binding of 125I-Fbg to ETP showed that Mn2+ increased the Kd value of binding but did not affect the number of Fbg binding sites. These results indicate that Mn2+ specifically and dose-dependently potentiated Fbg-induced aggregation of ETP and that this effect of Mn2+ may be due to an increase in the affinity of binding of Fbg to the glycoprotein IIb-IIIa complex on the membranes of ETP.

Blood ◽  
1990 ◽  
Vol 75 (5) ◽  
pp. 1081-1086 ◽  
Author(s):  
M Cattaneo ◽  
MT Canciani ◽  
A Lecchi ◽  
RL Kinlough-Rathbone ◽  
MA Packham ◽  
...  

Normal human platelets aggregated by thrombin undergo the release reaction and are not readily deaggregated by the combination of inhibitors hirudin, chymotrypsin, and prostaglandin E1 (PGE1). In contrast, thrombin-induced aggregates of platelets from patients with delta-storage pool deficiency (delta-SPD), which lack releasable nucleotides, are readily deaggregated by the same combination of inhibitors. The ease with which delta-SPD platelets are deaggregated is caused by the lack of stabilizing effects of released ADP, since: (1) exogenous adenosine diphosphate (ADP) (10 mumol/L), but not serotonin (2 mumol/L), abolishes the ability of these inhibitors to deaggregate delta-SPD platelets; (2) thrombin-induced aggregates of platelets from a patient (V.R.) (whose platelets have a severe, selective impairment of sensitivity to ADP, but normal amounts of releasable nucleotides) can be readily deaggregated, and addition of ADP does not stabilize the platelet aggregates; (3) apyrase or creatine phosphate (CP)/creatine phosphokinase (CPK), added before thrombin, make control platelets more easily deaggregated by hirudin, chymotrypsin, and PGE1, and do not change the deaggregation response of delta-SPD platelets and of V.R.'s platelets. Thrombin-induced aggregation and release of beta- thromboglobulin in control, delta-SPD, and in V.R.'s platelets was similar and not inhibited by apyrase or CP/CPK. The stabilizing effect of ADP on platelet aggregates is specific, since epinephrine in the presence of apyrase to remove traces of released ADP does not stabilize the aggregates of control, delta-SPD, or of V.R.'s platelets. Because epinephrine increases fibrinogen binding to thrombin-stimulated platelets to a greater extent than ADP, but does not stabilize the aggregates, it is unlikely that the additional fibrinogen binding sites induced by ADP have a major role in inhibiting deaggregation by the combination of inhibitors.


Blood ◽  
1990 ◽  
Vol 75 (5) ◽  
pp. 1081-1086 ◽  
Author(s):  
M Cattaneo ◽  
MT Canciani ◽  
A Lecchi ◽  
RL Kinlough-Rathbone ◽  
MA Packham ◽  
...  

Abstract Normal human platelets aggregated by thrombin undergo the release reaction and are not readily deaggregated by the combination of inhibitors hirudin, chymotrypsin, and prostaglandin E1 (PGE1). In contrast, thrombin-induced aggregates of platelets from patients with delta-storage pool deficiency (delta-SPD), which lack releasable nucleotides, are readily deaggregated by the same combination of inhibitors. The ease with which delta-SPD platelets are deaggregated is caused by the lack of stabilizing effects of released ADP, since: (1) exogenous adenosine diphosphate (ADP) (10 mumol/L), but not serotonin (2 mumol/L), abolishes the ability of these inhibitors to deaggregate delta-SPD platelets; (2) thrombin-induced aggregates of platelets from a patient (V.R.) (whose platelets have a severe, selective impairment of sensitivity to ADP, but normal amounts of releasable nucleotides) can be readily deaggregated, and addition of ADP does not stabilize the platelet aggregates; (3) apyrase or creatine phosphate (CP)/creatine phosphokinase (CPK), added before thrombin, make control platelets more easily deaggregated by hirudin, chymotrypsin, and PGE1, and do not change the deaggregation response of delta-SPD platelets and of V.R.'s platelets. Thrombin-induced aggregation and release of beta- thromboglobulin in control, delta-SPD, and in V.R.'s platelets was similar and not inhibited by apyrase or CP/CPK. The stabilizing effect of ADP on platelet aggregates is specific, since epinephrine in the presence of apyrase to remove traces of released ADP does not stabilize the aggregates of control, delta-SPD, or of V.R.'s platelets. Because epinephrine increases fibrinogen binding to thrombin-stimulated platelets to a greater extent than ADP, but does not stabilize the aggregates, it is unlikely that the additional fibrinogen binding sites induced by ADP have a major role in inhibiting deaggregation by the combination of inhibitors.


Blood ◽  
1980 ◽  
Vol 56 (3) ◽  
pp. 553-555 ◽  
Author(s):  
EF Plow ◽  
GA Marguerie

Abstract Thrombin and adenosine diphosphate (ADP) supported the binding of 125I- fibrinogen to washed human platelets with similar kinetics and affinity. Platelet secretion, as measured by 14C-serotonin release, and fibrinogen binding exhibited an identical dependence on thrombin concentration. Enzymatic removal of ADP with apyrase or creatine phosphate/creatine phosphokinase (CP/CPK) from thrombin-stimulated platelets markedly inhibited 125I-fibrinogen binding, but pretreatment of platelets with CP/CPK prior to thrombin stimulation was without effect. Thus, ADP, released from the platelet, participates in the binding of fibrinogen to thrombin-stimulated platelets.


1974 ◽  
Vol 32 (01) ◽  
pp. 207-215 ◽  
Author(s):  
David R. Phillips

SummaryThe possibility that thrombin acts on platelets by a mechanism other than proteolysis was investigated. The proteolytic site of thrombin was modified with phenylmethylsulfonyl fluoride (PMSF). This modified enzyme did not induce platelet aggregation or the platelet release reaction. Platelets were then incubated with the inactivated enzyme (PMS-thrombin) and later with active thrombin. In this sequence of incubation, PMS-thrombin enhanced not only platelet aggregation induced by active thrombin but also the thrombin-induced release reaction. Preincubation with PMS-thrombin was essential for this enhancement as the inhibited enzyme did not affect aggregation if added after active thrombin. The effect of PMS-thrombin was limited to thrombin-induced reactions of the platelet. The inhibited enzyme had no effect on aggregation induced by adenosine diphosphate or collagen, or on thrombininduced coagulation of fibrinogen. These results suggest (1) that both proteolytic and binding sites for thrombin are present on the human platelet plasma membrane ; and (2) that interaction of thrombin with the binding site potentiates the activity of the proteolytic site.


1976 ◽  
Vol 36 (02) ◽  
pp. 360-375 ◽  
Author(s):  
M. A Guccione ◽  
M. A Packham ◽  
R. L Kinlough-Rathbone ◽  
D. W Perry ◽  
J. F Mustard

SummaryThe effects of polylysine on human platelets have been examined in citrated platelet-rich plasma (PRP) and in suspensions of washed platelets in various media. In PRP, polylysine caused aggregation after a lag phase. Heparin inhibited this completely. At certain concentrations of polylysine, two phases of aggregation occurred, the second being associated with release of 14C-serotonin from prelabelled platelets; this phase was inhibitable with prostaglandin E1, acetylsalicylic acid, sulphinpyrazone, adenosine, apyrase, or creatine phos- phate/creatine phosphokinase. Polylysine-induced release also occurred in PRP with EDTA or hirudin as anticoagulant. In suspensions of washed platelets in Tyrode solution containing 0.35% or 4% albumin, or 1% gelatin, polylysine caused immediate platelet-to-platelet adherence and very little release of 14C-serotonin or platelet lysis. Heparin inhibited aggregation, but acetylsalicylic acid, prostaglandin E1, adenosine, apyrase, creatine phosphate/creatine phosphokinase or EDTA did not. In a modified Tyrode-albumin medium containing 1 mM magnesium but no calcium, polylysine-induced aggregation was associated with the release of 14C-serotonin which could be inhibited by acetylsalicylic acid or indomethacin; this is similar to the effect of ADP in this medium. In Tyrode solution without albumin or gelatin, polylysine-induced platelet aggregation was associated with release of a large percentage of 14C-serotonin, together with as much as 18% lysis; indomethacin inhibited this release reaction.


Blood ◽  
1980 ◽  
Vol 56 (3) ◽  
pp. 553-555
Author(s):  
EF Plow ◽  
GA Marguerie

Thrombin and adenosine diphosphate (ADP) supported the binding of 125I- fibrinogen to washed human platelets with similar kinetics and affinity. Platelet secretion, as measured by 14C-serotonin release, and fibrinogen binding exhibited an identical dependence on thrombin concentration. Enzymatic removal of ADP with apyrase or creatine phosphate/creatine phosphokinase (CP/CPK) from thrombin-stimulated platelets markedly inhibited 125I-fibrinogen binding, but pretreatment of platelets with CP/CPK prior to thrombin stimulation was without effect. Thus, ADP, released from the platelet, participates in the binding of fibrinogen to thrombin-stimulated platelets.


1994 ◽  
Vol 71 (01) ◽  
pp. 091-094 ◽  
Author(s):  
M Cattaneo ◽  
B Akkawat ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
C Cimminiello ◽  
...  

SummaryNormal human platelets aggregated by thrombin undergo the release reaction and are not readily deaggregated by the combination of inhibitors hirudin, prostaglandin E1 (PGE1) and chymotrypsin. Released adenosine diphosphate (ADP) plays an important role in the stabilization of thrombin-induced human platelet aggregates. Since ticlopidine inhibits the platelet responses to ADP, we studied thrombin-induced aggregation and deaggregation of 14C-serotonin-labeled platelets from 12 patients with cardiovascular disease before and 7 days after the oral administration of ticlopidine, 250 mg b.i.d. Before and after ticlopidine, platelets stimulated with 1 U/ml thrombin aggregated, released about 80–90% 14C-serotinin and did not deaggregate spontaneously within 5 min from stimulation. Before ticlopidine, hirudin (5× the activity of thrombin) and PGE1 (10 μmol/1) plus chymotrypsin (10 U/ml) or plasmin (0.06 U/ml), added at the peak of platelet aggregation, caused slight or no platelet deaggregation. After ticlopidine, the extent of platelet deaggregation caused by the same inhibitors was significantly greater than before ticlopidine. The addition of ADP (10 μmol/1) to platelet suspensions 5 s after thrombin did not prevent the deaggregation of ticlopidine-treated platelets. Thus, ticlopidine facilitates the deaggregation of thrombin-induced human platelet aggregates, most probably because it inhibits the effects of ADP on platelets.


1994 ◽  
Vol 71 (01) ◽  
pp. 078-090 ◽  
Author(s):  
H L Goldsmith ◽  
M M Frojmovic ◽  
Susan Braovac ◽  
Fiona McIntosh ◽  
T Wong

SummaryThe effect of shear rate and fibrinogen concentration on adenosine diphosphate-induced aggregation of suspensions of washed human platelets in Poiseuille flow at 23°C was studied using a previously described double infusion technique and resistive particle counter size analysis (1). Using suspensions of multiple-centrifuged and -washed cells in Tyrodes-albumin [3 × 105 μl−1; (17)] with [fibrinogen] from 0 to 1.2μM, the, rate and extent of aggregation with 0.7 μM ADP in Tyrodes-albumin were measured over a range of mean transit times from 0.2 to 43 s, and at mean tube shear rates, Ḡ, = 41.9, 335 and 1,335 s−1. As measured by the decrease in singlet concentration, aggregation at 1.2 μM fibrinogen increased with increasing Ḡ up to 1,335 s1, in contrast to that previously reported in citratcd plasma, in which aggregation reached a maximum at Ḡ = 335 s−1. Without added fibrinogen, there was no aggregation at Ḡ = 41.9 s1; at Ḡ = 335 s1, there was significant aggregation but with an initial lag time, aggregation increasing further at Ḡ = 1,335 s−1. Without added fibrinogen, aggregation was abolished at all Ḡ upon incubation with the hexapeptide GRGDSP, but was almost unaffected by addition of an F(ab’)2 fragment of an antibody to human fibrinogen. Aggregation in the absence of added fibrinogen was also observed at 37°C. The activation of the multiple-washed platelets was tested using flow cytometry with the fluorescently labelled monoclonal antibodies FITC-PAC1 and FITC-9F9. It was shown that 57% of single cells in unactivated PRT expressed maximal GPIIb-IIIa fibrinogen receptors (MoAb PAC1) and 54% expressed pre-bound fibrinogen (MoAb 9F9), with further increases on ADP activation. However, incubation with GRGDSP and the F(ab’)2 fragment did not inhibit the prebound fibrinogen. Moreover, relatively unactivated cells (8% expressing receptor, 14% prebound fibrinogen), prepared from acidified cPRP by single centrifugation with 50 nM of the stable prostacyclin derivative, ZK 36 374, and resuspension in Tyrodes-albumin at 5 × 104 μl−1, aggregated with 2 and 5 μM ADP at Ḡ = 335 and 1,335 s−1 in the absence of added fibrinogen. We therefore postulate that a protein such as von Willebrand factor, secreted during platelet isolation or in flow at sufficiently high shear rates, may yield the observed shear-rate dependent aggregation without fibrinogen.


1979 ◽  
Vol 42 (04) ◽  
pp. 1193-1206 ◽  
Author(s):  
Barbara Nunn

SummaryThe hypothesis that platelet ADP is responsible for collagen-induced aggregation has been re-examined. It was found that the concentration of ADP obtaining in human PRP at the onset of aggregation was not sufficient to account for that aggregation. Furthermore, the time-course of collagen-induced release in human PRP was the same as that in sheep PRP where ADP does not cause release. These findings are not consistent with claims that ADP alone perpetuates a collagen-initiated release-aggregation-release sequence. The effects of high doses of collagen, which released 4-5 μM ADP, were not inhibited by 500 pM adenosine, a concentration that greatly reduced the effect of 300 μM ADP. Collagen caused aggregation in ADP-refractory PRP and in platelet suspensions unresponsive to 1 mM ADP. Thus human platelets can aggregate in response to collagen under circumstances in which they cannot respond to ADP. Apyrase inhibited aggregation and ATP release in platelet suspensions but not in human PRP. Evidence is presented that the means currently used to examine the role of ADP in aggregation require investigation.


1982 ◽  
Vol 48 (01) ◽  
pp. 078-083 ◽  
Author(s):  
C Ts'ao ◽  
S J Hart ◽  
D V Krajewski ◽  
P G Sorensen

SummaryEarlier, we found that ε-aminocaproic acid (EACA) inhibited human platelet aggregation induced by adenosine diphosphate (ADP) and collagen, but not aggregation by arachidonic acid (AA). Since EACA is structurally similar to lysine, yet these two agents exhibit vast difference in their antifibrinolytic activities, we chose to study the effect of lysine on platelet aggregation. We used L-lysine-HCl in these studies because of its high solubility in aqueous solutions while causing no change in pH when added to human plasma. With lysine, we repeatedly found inhibition of ADP-, collagen- and ristocetin-induced aggregation, but potentiation of AA-induced aggregation. Both the inhibitory and potentiation effects were dose-dependent. Low doses of lysine inhibited the secondary phase of aggregation; high doses of it also inhibited the primary phase of aggregation. Potentiation of AA-induced aggregation was accompanied by increased release of serotonin and formation of malondialdehyde. These effects were not confined to human platelets; rat platelets were similarly affected. Platelets, exposed to lysine and then washed and resuspended in an artificial medium not containing lysine, remained hypersensitive to AA, but no longer showed decreased aggregation by collagen. Comparing the effects of lysine with equimolar concentrations of sucrose, EACA, and α-amino-n-butyric acid, we attribute the potent inhibitory effect of lysine to either the excess positive charge or H+ and C1− ions. The -NH2 group on the α-carbon on lysine appears to be the determining factor for the potentiation effect; the effect seems to be exerted on the cyclooxygenase level of AA metabolism. Lysine and other chemicals with platelet-affecting properties similar to lysine may be used as a tool for the study of the many aspects of a platelet aggregation reaction.


Sign in / Sign up

Export Citation Format

Share Document