Reactions of Polylysine with Human Platelets in Plasma and in Suspensions of Washed Platelets

1976 ◽  
Vol 36 (02) ◽  
pp. 360-375 ◽  
Author(s):  
M. A Guccione ◽  
M. A Packham ◽  
R. L Kinlough-Rathbone ◽  
D. W Perry ◽  
J. F Mustard

SummaryThe effects of polylysine on human platelets have been examined in citrated platelet-rich plasma (PRP) and in suspensions of washed platelets in various media. In PRP, polylysine caused aggregation after a lag phase. Heparin inhibited this completely. At certain concentrations of polylysine, two phases of aggregation occurred, the second being associated with release of 14C-serotonin from prelabelled platelets; this phase was inhibitable with prostaglandin E1, acetylsalicylic acid, sulphinpyrazone, adenosine, apyrase, or creatine phos- phate/creatine phosphokinase. Polylysine-induced release also occurred in PRP with EDTA or hirudin as anticoagulant. In suspensions of washed platelets in Tyrode solution containing 0.35% or 4% albumin, or 1% gelatin, polylysine caused immediate platelet-to-platelet adherence and very little release of 14C-serotonin or platelet lysis. Heparin inhibited aggregation, but acetylsalicylic acid, prostaglandin E1, adenosine, apyrase, creatine phosphate/creatine phosphokinase or EDTA did not. In a modified Tyrode-albumin medium containing 1 mM magnesium but no calcium, polylysine-induced aggregation was associated with the release of 14C-serotonin which could be inhibited by acetylsalicylic acid or indomethacin; this is similar to the effect of ADP in this medium. In Tyrode solution without albumin or gelatin, polylysine-induced platelet aggregation was associated with release of a large percentage of 14C-serotonin, together with as much as 18% lysis; indomethacin inhibited this release reaction.

1988 ◽  
Vol 60 (02) ◽  
pp. 209-216 ◽  
Author(s):  
Chantal Lalau Keraly ◽  
Raelene L Kinlough-Rathbone ◽  
Marian A Packham ◽  
Hidenori Suzuki ◽  
J Fraser Mustard

SummaryConditions affecting the responses of human platelets to epinephrine were examined. In platelet-rich plasma prepared from blood anticoagulated with hirudin or PPACK (D-pheny- lalanyl-L-prolyl-L-arginine chloromethyl ketone), epinephrine did not cause shape change or aggregation. In a Tyrode-albumin- apyrase solution containing a concentration of Ca2+ in the physiological range, and fibrinogen, epinephrine in concentrations as high as 40 μM did not induce platelet shape change, caused either no primary aggregation or very slight primary aggregation, and did not induce thromboxane formation, release of dense granule contents, or secondary aggregation. In contrast, in citrated platelet-rich plasma, epinephrine induced two phases of aggregation. This is not attributable to the generation of traces of thrombin since the same effects were evident when blood was taken into a combined citrate-hirudin anticoagulant or a combined citrate-PPACK anticoagulant. In a modified Tyrode-albu- min-apyrase solution containing approximately 20 μM Ca2+, 1 mM Mg2+, and fibrinogen, epinephrine induced extensive aggregation after a lag phase, but no primary phase was evident; thromboxane formation and release of dense granule contents accompanied the aggregation response. These responses were also observed when PPACK was included with the acid-citrate- dextrose anticoagulant, and in the washing and resuspending fluids. In the presence of aspirin or the thromboxane receptor blocker BM 13.177 a few small aggregates were detected by particle counting and by scanning electron microscopy; with the latter inhibitor, the platelets in the aggregates retained their disc shape; secondary aggregation and the responses associated with it did not occur. Thus thromboxane A2 formation is not necessary for the formation of these small aggregates, but is required for extensive aggregation and release. As with other weak agonists, the close platelet-to-platelet contact in the low Ca2+ medium appears to be necessary for full secondary aggregation. Omission of fibrinogen from the low Ca2+ medium prevented both primary and secondary aggregation in response to epinephrine. An antibody (10E5) to the glycoprotein Ilb/IIIa complex was completely inhibitory in the presence of fibrinogen. Thus the response of human platelets to epinephrine is influenced by the concentration of Ca2+ and the presence of fibrinogen in the medium in which they are suspended.


Blood ◽  
1974 ◽  
Vol 44 (3) ◽  
pp. 411-425 ◽  
Author(s):  
V. J. McPherson ◽  
M. B. Zucker ◽  
N. M. Friedberg ◽  
P. L. Rifkin

Abstract Plasma of normal heparinized blood contained 0.284 µM ± SD 0.097 (ADP + ATP) with an ATP:ADP ratio of 2.5:1. Plasma from thrombocytopenic blood contained only 0.106 µM ± 0.073 (ADP + ATP). Blood with normal platelet retention released 0.234 µM ± 0.187 (ADP + ATP) during passage through a glass bead column, with an ATP:ADP ratio of 1.6:1. Significantly less was released in blood with low retention, i.e., samples from patients with von Willebrand’s disease, thrombasthenia, or thrombocytopenia, and some samples from normal individuals. Thus, nucleotides in the plasma of pre- and postcolumn blood appear to be derived from platelets; their release within glass bead columns is closely associated with normal platelet retention. Since release occurred at room temperature and was not prevented by acetylsalicylic acid or accompanied by measurable release of 14C-serotonin, the classic release reaction may not have been responsible. The low retention in platelet-rich plasma was variably increased by adding 0.5 µM ADP, an increase at least partly due to trapping of preformed aggregates. Retention in undisturbed blood was markedly inhibited by creatine phosphokinase with creatine phosphate (CPK-CP) and moderately inhibited by apyrase I (ATPase:ADPase 0.8:1) at an ADP-removing activity between 1 and 5 U/ml, indicating that ADP is essential for retention. At less than 1 U/ml, both apyrase I and II (ATPase: ADPase 2.8:1) enhanced retention in undisturbed blood, but CPK-CP was still inhibitory. These results suggest that enhancement is due to conversion of released ATP to ADP, as shown to occur in studies of platelet aggregation with ATP and ADP. At less than 1 U/ml, all three enzymes protected against the inhibitory effect of disturbance; this protection was marked with apyrase II, moderate with apyrase I and slight with CPK-CP. These observations provide additional evidence that ADP is responsible for the low retention caused by disturbance of the blood.


Blood ◽  
1990 ◽  
Vol 75 (5) ◽  
pp. 1081-1086 ◽  
Author(s):  
M Cattaneo ◽  
MT Canciani ◽  
A Lecchi ◽  
RL Kinlough-Rathbone ◽  
MA Packham ◽  
...  

Normal human platelets aggregated by thrombin undergo the release reaction and are not readily deaggregated by the combination of inhibitors hirudin, chymotrypsin, and prostaglandin E1 (PGE1). In contrast, thrombin-induced aggregates of platelets from patients with delta-storage pool deficiency (delta-SPD), which lack releasable nucleotides, are readily deaggregated by the same combination of inhibitors. The ease with which delta-SPD platelets are deaggregated is caused by the lack of stabilizing effects of released ADP, since: (1) exogenous adenosine diphosphate (ADP) (10 mumol/L), but not serotonin (2 mumol/L), abolishes the ability of these inhibitors to deaggregate delta-SPD platelets; (2) thrombin-induced aggregates of platelets from a patient (V.R.) (whose platelets have a severe, selective impairment of sensitivity to ADP, but normal amounts of releasable nucleotides) can be readily deaggregated, and addition of ADP does not stabilize the platelet aggregates; (3) apyrase or creatine phosphate (CP)/creatine phosphokinase (CPK), added before thrombin, make control platelets more easily deaggregated by hirudin, chymotrypsin, and PGE1, and do not change the deaggregation response of delta-SPD platelets and of V.R.'s platelets. Thrombin-induced aggregation and release of beta- thromboglobulin in control, delta-SPD, and in V.R.'s platelets was similar and not inhibited by apyrase or CP/CPK. The stabilizing effect of ADP on platelet aggregates is specific, since epinephrine in the presence of apyrase to remove traces of released ADP does not stabilize the aggregates of control, delta-SPD, or of V.R.'s platelets. Because epinephrine increases fibrinogen binding to thrombin-stimulated platelets to a greater extent than ADP, but does not stabilize the aggregates, it is unlikely that the additional fibrinogen binding sites induced by ADP have a major role in inhibiting deaggregation by the combination of inhibitors.


1975 ◽  
Vol 228 (6) ◽  
pp. 1757-1765 ◽  
Author(s):  
JF Mustard ◽  
DW Perry ◽  
RL Kinlough-Rathbone ◽  
MA Packham

Extensive aggregation of human platelets can be induced by ADP without secondaryaggregation or release of granule contents. This occurs with washed platelets in Tyrode solution containing 0.35% albumin, human fibrinogen, and apyrase, and in platelet-rich, heparin- or hirudin-plasma. Conditions that caused release during ADP-inducedaggregation were-citrate as the anticoagulant in platelet-rich plasma; addition of citrate (11-15 mM) to a suspension of washed platelets, or to hirudin-plasma or heparin-plasma; suspension of platelets in a medium containing magnesium but no calcium;and the presence of trace amounts of thrombin or aggregated gamma globulin in the platelet suspensions. Acetylsalicylic acid, phenylbutazone, or sulfinpyrazone inhibited secondary aggregation and release in all these circumstances. Heparin or hirudin inhibited ADP-INDUCED SECONDARY AGGREGATION AND RELEASE PROMOTED BY TRACES OF THROMBIN. Although fibrinogen is required for ADP-induced primary aggregation, it does not support secondary aggregation and release, provided that it has no clot-promoting activity. The main agent responsible for ADP-induced secondary aggregation and release in human, citrated, platelet-rich plasma appears to be sodium citrate. Suspending washed human platelets in a medium without calcium mimics the effect of citrate.


1981 ◽  
Author(s):  
M W Moritz ◽  
S P Sutera ◽  
J H Joist

Fluid shear-induced platelet alterations may be responsible for both thromboembolic complications and platelet dysfunction associated with extracorporeal circulation. Previous work in our laboratory using a Couette rotational viscometer with controlled laminar flow conditions demonstrated that shear-induced platelet aggregation (SIPA) in citrated human platelet-rich plasma at 24°C is associated with the release of substances from both the dense and α-granules of platelets and is not inhibited by aspirin (ASA) induced complete suppression of thromboxane A2-synthesis. We studied SIPA in suspensions of washed human platelets in Tyrode albumin solution at 37°C to determine the importance of releasable ADP, thromboxane A2 synthesis and the level of intracellular cAMP in SIPA. SIPA in this system was found to require the presence of added Ca++ (but not Mg++ or fibrinogen) in the medium. ASA (100 μM) did not cause appreciable inhibition of SIPA. Creatine phosphate- creatine phosphoklnase (CP/CPK), an enzyme system that converts ADP to ATP, caused 40% inhibition of SIPA. With both ASA and CP/CPK present in the suspension, SIPA was identical to that obtained with CP/CPK alone. However, preincubation of the suspension with PGE1 (1 μM) and theophylline (100 μM) caused complete inhibition of SIPA. These findings indicate that SIPA 1n this system can occur by thromboxane A2- and ADP-independent pathway(s), which may be modulated by intracellular cAMP.


1989 ◽  
Vol 62 (03) ◽  
pp. 984-988 ◽  
Author(s):  
Hiroyuki Azuma ◽  
Toshio Shigekiyo ◽  
Shinji Miura ◽  
Yuka Uno ◽  
Shiro Saito

SummaryThe effect of manganese ion (Mn2+) on the aggregation of porcine pancreatic elastase-treated platelets (ETP) induced by fibrinogen (Fbg) was studied. Mn2+ enhanced the aggregation of ETP on addition of Fbg specifically and dose-dependently. This effect of Mn2+ was not associated with the formation of thromboxane A2, and was not affected by pretreatment of ETP with acetylsalicylic acid in the presence of Mn2+. Moreover, it was not dependent on extracellular adenosine diphosphate, as shown by removal of extracellular adenosine diphosphate by pretreatment of ETP with creatine phosphate/creatine phosphokinase. Studies on the binding of 125I-Fbg to ETP showed that Mn2+ increased the Kd value of binding but did not affect the number of Fbg binding sites. These results indicate that Mn2+ specifically and dose-dependently potentiated Fbg-induced aggregation of ETP and that this effect of Mn2+ may be due to an increase in the affinity of binding of Fbg to the glycoprotein IIb-IIIa complex on the membranes of ETP.


1979 ◽  
Vol 42 (05) ◽  
pp. 1580-1588 ◽  
Author(s):  
Ethan J Haskel ◽  
Kailash C Agarwal ◽  
Robert E Parks

SummaryATP caused platelet aggregation in rat platelet-rich plasma (PRP) but in contrast strongly inhibited ADP-induced human platelet aggregation. ADP-induced aggregation of rat platelets suspended in human plasma was strongly inhibited by ATP, whereas human platelets in rat plasma were aggregated by ADP. The ATP analog β,γ-methylene ATP which is not dephosphorylated did not induce aggregation in rat PRP. Adenosine, AMP, 2- chloroadenosine, α,β-methylene ADP and β,γ-methylene ATP each inhibited ATP-induced aggregation of platelets in rat PRP to a similar extent as ADP-induced aggregation. A solution containing creatine kinase and creatine phosphate (which converts ADP to ATP) rapidly reversed both ADP- and ATP-induced aggregation in rat PRP; preincubation with this solution completely inhibited rat platelet aggregation induced by both ADP and ATP. Adenosine-8-14C-triphosphate ([14C]-ATP) conversion to [14C]-ADP was about five-fold faster in rat plasma than in human plasma. Addition of creatine phosphate to rat PRP strongly inhibited ATP-induced aggregation, while creatine or creatine kinase slightly potentiated aggregation by ATP. Creatine phosphate, creatine, or creatine kinase individually had minimal and varying effects on ADP-induced rat platelet aggregation. These results suggest that the observed phenomenon of ATP-induced aggregation in rat PRP is caused by a higher activity of creatine kinase in rat plasma than in human plasma, which converts the added ATP to ADP, a potent aggregator.


Blood ◽  
1990 ◽  
Vol 75 (5) ◽  
pp. 1081-1086 ◽  
Author(s):  
M Cattaneo ◽  
MT Canciani ◽  
A Lecchi ◽  
RL Kinlough-Rathbone ◽  
MA Packham ◽  
...  

Abstract Normal human platelets aggregated by thrombin undergo the release reaction and are not readily deaggregated by the combination of inhibitors hirudin, chymotrypsin, and prostaglandin E1 (PGE1). In contrast, thrombin-induced aggregates of platelets from patients with delta-storage pool deficiency (delta-SPD), which lack releasable nucleotides, are readily deaggregated by the same combination of inhibitors. The ease with which delta-SPD platelets are deaggregated is caused by the lack of stabilizing effects of released ADP, since: (1) exogenous adenosine diphosphate (ADP) (10 mumol/L), but not serotonin (2 mumol/L), abolishes the ability of these inhibitors to deaggregate delta-SPD platelets; (2) thrombin-induced aggregates of platelets from a patient (V.R.) (whose platelets have a severe, selective impairment of sensitivity to ADP, but normal amounts of releasable nucleotides) can be readily deaggregated, and addition of ADP does not stabilize the platelet aggregates; (3) apyrase or creatine phosphate (CP)/creatine phosphokinase (CPK), added before thrombin, make control platelets more easily deaggregated by hirudin, chymotrypsin, and PGE1, and do not change the deaggregation response of delta-SPD platelets and of V.R.'s platelets. Thrombin-induced aggregation and release of beta- thromboglobulin in control, delta-SPD, and in V.R.'s platelets was similar and not inhibited by apyrase or CP/CPK. The stabilizing effect of ADP on platelet aggregates is specific, since epinephrine in the presence of apyrase to remove traces of released ADP does not stabilize the aggregates of control, delta-SPD, or of V.R.'s platelets. Because epinephrine increases fibrinogen binding to thrombin-stimulated platelets to a greater extent than ADP, but does not stabilize the aggregates, it is unlikely that the additional fibrinogen binding sites induced by ADP have a major role in inhibiting deaggregation by the combination of inhibitors.


1994 ◽  
Vol 71 (01) ◽  
pp. 091-094 ◽  
Author(s):  
M Cattaneo ◽  
B Akkawat ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
C Cimminiello ◽  
...  

SummaryNormal human platelets aggregated by thrombin undergo the release reaction and are not readily deaggregated by the combination of inhibitors hirudin, prostaglandin E1 (PGE1) and chymotrypsin. Released adenosine diphosphate (ADP) plays an important role in the stabilization of thrombin-induced human platelet aggregates. Since ticlopidine inhibits the platelet responses to ADP, we studied thrombin-induced aggregation and deaggregation of 14C-serotonin-labeled platelets from 12 patients with cardiovascular disease before and 7 days after the oral administration of ticlopidine, 250 mg b.i.d. Before and after ticlopidine, platelets stimulated with 1 U/ml thrombin aggregated, released about 80–90% 14C-serotinin and did not deaggregate spontaneously within 5 min from stimulation. Before ticlopidine, hirudin (5× the activity of thrombin) and PGE1 (10 μmol/1) plus chymotrypsin (10 U/ml) or plasmin (0.06 U/ml), added at the peak of platelet aggregation, caused slight or no platelet deaggregation. After ticlopidine, the extent of platelet deaggregation caused by the same inhibitors was significantly greater than before ticlopidine. The addition of ADP (10 μmol/1) to platelet suspensions 5 s after thrombin did not prevent the deaggregation of ticlopidine-treated platelets. Thus, ticlopidine facilitates the deaggregation of thrombin-induced human platelet aggregates, most probably because it inhibits the effects of ADP on platelets.


1990 ◽  
Vol 63 (01) ◽  
pp. 112-121 ◽  
Author(s):  
David N Bell ◽  
Samira Spain ◽  
Harry L Goldsmith

SummaryThe effect of red blood cells, rbc, and shear rate on the ADPinduced aggregation of platelets in whole blood, WB, flowing through polyethylene tubing was studied using a previously described technique (1). Effluent WB was collected into 0.5% glutaraldehyde and the red blood cells removed by centrifugation through Percoll. At 23°C the rate of single platelet aggregtion was upt to 9× greater in WB than previously found in platelet-rich plasma (2) at mean tube shear rates Ḡ = 41.9,335, and 1,920 s−1, and at both 0.2 and 1.0 µM ADP. At 0.2 pM ADP, the rate of aggregation was greatest at Ḡ = 41.9 s−1 over the first 1.7 s mean transit time through the flow tube, t, but decreased steadily with time. At Ḡ ≥335 s−1 the rate of aggregation increased between t = 1.7 and 8.6 s; however, aggregate size decreased with increasing shear rate. At 1.0 µM ADP, the initial rate of single platelet aggregation was still highest at Ḡ = 41.9 s1 where large aggregates up to several millimeters in diameter containing rbc formed by t = 43 s. At this ADP concentration, aggregate size was still limited at Ḡ ≥335 s−1 but the rate of single platelet aggregation was markedly greater than at 0.2 pM ADP. By t = 43 s, no single platelets remained and rbc were not incorporated into aggregates. Although aggregate size increased slowly, large aggregates eventually formed. White blood cells were not significantly incorporated into aggregates at any shear rate or ADP concentration. Since the present technique did not induce platelet thromboxane A2 formation or cause cell lysis, these experiments provide evidence for a purely mechanical effect of rbc in augmenting platelet aggregation in WB.


Sign in / Sign up

Export Citation Format

Share Document