The Inhibitory Effect Of Dilazep On Adhesion And Aggregation Of Platelet Following Aortic Intimal Injury In Rabbit

1981 ◽  
Author(s):  
A Sumiyoshi ◽  
T Hayashi ◽  
M Fujii

The inhibitory effect of dilazep and aspirin on in vivo platelet adhesion and aggregation in rabbit aorta subjected to endothelial injury was investigated. Endothelial injury was induced by insertion of polyethylene tubing from the femoral artery into the aorta. In the beginning before surgery, experimental animals were intravenously given sufficient drug to inhibit platelet aggregation in vitro in response to ADP and collagen. For a quantitative analysis of platelet accumulation on the damaged aortas, 51Cr-labeled platelets were used. For morphological study, the aortas were fixed by perfusion at one hour after injury and examined by light and scanning electron microscopy for platelet adhesion and aggregation in injured area.Radioactivity of damaged aortas in rabbits administered dilazep (50 or 100 μg/kg) or aspirin (10 mg/kg) was significantly lower than in rabbits untreated by drug. Dilazep and aspirin did not prevent completely the adherence of platelets on injured area of the aorta, but inhibited considerably the platelet aggregation to form raised platelet thrombus.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 156-156
Author(s):  
Christopher M. Spring ◽  
Wuxun Jin ◽  
Hong Yang ◽  
Adili Reheman ◽  
Guangheng Zhu ◽  
...  

Abstract Abstract 156 Platelet adhesion and aggregation at sites of vascular injury are key events required for haemostasis and thrombosis. It has been documented that von Willebrand factor (VWF) and fibrinogen (Fg) are required for platelet adhesion and aggregation. However, we previously showed that occlusive thrombi still form in mice deficient for both Fg and VWF (Fg/VWF−/−) via a β3 integrin-dependent pathway. Here, we have investigated novel, non-classical ligands of β3 integrin that may regulate platelet adhesion and aggregation. To identify potential ligand(s) of β3 integrin, latex beads were coated with purified human platelet β3 integrin and incubated with human plasma. Protein(s) specifically associated with β3 integrin were electrophoresed and apolipoprotein AIV (ApoA-IV) was identified by mass spectrometry. We found that ApoA-IV binds to the surface of stimulated platelets, but not to quiescent platelets or β3−/− platelets, and ApoA-IV/platelet association was blocked by the addition of a specific anti-β3 integrin monoclonal antibody. It appears that ApoA-IV binds to, but is not internalized by platelet β3 integrins. ApoA-IV-deficient (ApoA-IV−/−) mice exhibited enhanced platelet aggregation induced by ADP, Collagen, and TRAP in plasma (but not PIPES buffer) compared to wild type (WT) littermates. This enhancement was diminished when ApoA-IV−/− plasma was replaced by WT plasma, indicating that the reduction was due to plasma ApoA-IV and not an unrelated platelet effect. When platelets were incubated with FITC-Fg, ApoA-IV was able to reduce platelet/Fg association, indicating that ApoA-IV may act to displace pro-thrombotic β3 integrin ligand(s). In support of this, ApoA-IV reduced the number of adherent platelets on immobilized Fg in perfusion chamber assays and enhanced thrombus formation was observed when ApoA-IV−/− mouse blood was perfused over collagen. We found that addition of recombinant ApoA-IV inhibited platelet aggregation and thrombus formation in vitro, while the control apolipoprotein ApoA-I did not. Using intravital microscopy, we further demonstrated that early platelet deposition was increased, and the time for thrombus formation and vessel occlusion were shorter in ApoA-IV−/− mice, which can be corrected by recombinant ApoA-IV transfusion. Furthermore, recombinant ApoA-IV inhibited WT platelet aggregation, thrombus formation and enhanced thrombus dissolution both in vitro and in vivo. Our data demonstrate for the first time that ApoA-IV is a novel ligand of platelet β3 integrin that negatively regulates thrombosis. These new data are consistent with the reported association between ApoA-IV and reduced cardiovascular diseases, and establish the first link between ApoA-IV and thrombosis. Disclosures: No relevant conflicts of interest to declare.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


Author(s):  
R. Castillo ◽  
S. Maragall ◽  
J. A. Guisasola ◽  
F. Casals ◽  
C. Ruiz ◽  
...  

Defective ADP-induced platelet aggregation has been observed in patients treated with streptokinase. This same effect appears “in vitro” when adding SK to platelet rich plasma (PRP). Classic hemophilia and normal platelet poor plasmas (PPP) treated with SK inhibit the aggregation of washed platelets; plasmin-treated normal human serum also shows an inhibitory effect on platelet aggregation. However, von Willebrand SK-treated plasmas do not inhibit the aggregation of washed platelets. The same results appear when plasmas are previously treated with a rabbit antibody to human factor VIII.This confirms that the antiaggregating effect is mainly linked to the digested factor VIII related antigen.The inhibition of ADP-induced platelet aggregation has been proved in gel filtration-isolated and washed platelets from SK-treated PRP.Defective ristocetin-induced platelet aggregation has also been observed- This action does not appear in washed platelets from SK-treated PRP in presence of normal PPP, but it does in presence of SK-treated PPP, which suggests that the inhibition of the ristocetin-induced aggregation is due to the lack of factor VIII and not to the factor VIII-related products.Heparin, either “in vivo” or “in vitro”, has corrected the antiaggregating effect of SK.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3926-3926 ◽  
Author(s):  
Subia Tasneem ◽  
Adili Reheman ◽  
Heyu Ni ◽  
Catherine P.M. Hayward

Abstract Studies of mice with genetic deficiencies have provided important insights on the functions of many proteins in thrombosis and hemostasis. Recently, a strain of mice (C57BL/6JOlaHsd, an inbred strain of C57BL/6J) has been identified to have a spontaneous, tandem deletion of the multimerin 1 and α-synuclein genes, which are also adjacent genes on human chromosome 4q22. Multimerin 1 is an adhesive protein found in platelets and endothelial cells while α-synuclein is a protein found in the brain and in blood that is implicated in neurodegenerative diseases and exocytosis. In vitro, multimerin 1 supports platelet adhesion while α-synuclein inhibits α-granule release. We postulated that the loss of multimerin 1 and α-synuclein would alter platelet function and that recombinant human multimerin 1 might correct some of these abnormalities. We compared platelet adhesion, aggregation and thrombus formation in vitro and in vivo in C57BL/6JOlaHsd and C57BL/6 mice. Thrombus formation was studied by using the ferric-chloride injured mesenteric arteriole thrombosis model under intravital microscopy. We found that platelet adhesion, aggregation and thrombus formation in C57BL/6JOlaHsd were significantly impaired in comparison to control, C57BL/6 mice. The number of single platelets, deposited 3–5 minutes after injury, was significantly decreased in C57BL/6JOlaHsd mice (P <0.05, platelets/min: C57BL/6 = 157 ± 15, n=16; C57BL/6JOlaHsd = 77 ± 13, n=17). Moreover, thrombus formation in these mice was significantly delayed. Thrombi in C57BL/6JOlaHsd were unstable and easily dissolved, which resulted in significant delays (P<0.001) in vessel occlusion (mean occlusion times: C57BL/6 = 15.6 ± 1.2 min, n=16; C57BL/6JOlaHsd = 31.9 ± 2.1 min, n=17). We further tested platelet function in these mice by ADP and thrombin induced platelet aggregation using platelet rich plasma and gel-filtered platelets, respectively. Although no significant differences were seen with ADP aggregation, thrombin-induced platelet aggregation was significantly impaired in C57BL/6JOlaHsd mice. Platelet adhesion to type I collagen (evaluated using microcapillary chambers, perfused at 1500 s−1 with whole blood) was also impaired in C57BL/6JOlaHsd mice. However, platelets from C57BL/6JOlaHsd mice showed a normal pattern of agonist-induced release of α-granule P-selectin. Multimerin 1 corrected the in vitro aggregation and adhesion defects of C57BL/6JOlaHsd platelets. Furthermore, the transfusion of multimerin 1 into C57BL/6JOlaHsd mice corrected the impaired platelet deposition and thrombus formation in vivo. No significant difference was found in tail bleeding time between the two groups of mice. As α-synuclein knockout mice have a shortened time to thrombus formation (Circulation2007;116:II_76), the effects of multimerin 1 on impaired platelet function in C57BL/6JOlaHsd mice provide supportive evidence that multimerin 1 contributes to platelet adhesion and thrombus formation at the site of vessel injury. The findings suggest multimerin 1 knockout mice will be useful to explore platelet function. The first two authors and participating laboratories contributed equally to this study.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2209-2209 ◽  
Author(s):  
Khon C. Huynh ◽  
Volker R. Stoldt ◽  
Marianna Gyenes ◽  
Abdelouahid El-Khattouti ◽  
Rudiger E. Scharf

Abstract Abstract 2209 Introduction: Fibronectin (Fn), a dimeric adhesive glycoprotein of 230 to 250 kDa monomers, is present both in plasma and the extracellular matrix. Fn has been suggested to interact with platelets, subsequently being unfolded and forming fibrillar-like networks that contribute to platelet adhesion and aggregation. In our study, we examined the effect of Fn isolated from plasma on platelet adhesion and aggregation in vitro. Specifically, we explored the effect of Fn unfolding while interacting with platelets. Methods: For adhesion experiments, mepacrine-labeled washed platelets in the absence or presence of exogenous Fn (100 μg/ml) were incubated in wells pre-coated with collagen type I, fibrinogen (Fg) or Fn (10 μg/ml each) for 30 min at 37°C. For aggregation experiments, washed platelets were stimulated with 40 nM PMA or 10 μg/ml collagen in the absence or presence of Fn (300 μg/ml). For fluorescence resonance energy transfer (FRET) experiments, Fn isolated from human plasma was doubly conjugated with alexa fluor 488 and 546. Labeled Fn was mixed with 10-fold excess of unlabeled Fn to prevent energy transfer between adjacent protein molecules. Fn mixtures (20 or 100 μg/ml) were incubated for 3 h at 22°C with washed platelets in suspension (108/ml) or with platelets adherent onto immobilized Fn (50 μg/ml). In both settings, platelets were stimulated by 40 nM PMA. In some experiments, platelets were pre-incubated with the monoclonal antibodies LM609 or 10E5 (10 μg/ml) to block αvβ3 or αIIbβ3, respectively, prior to the addition of labeled Fn. For control, FRET signals of Fn mixtures without platelets were recorded. Results: Upon addition of soluble Fn (100 μg/ml) to washed platelets and subsequent co-incubation in wells pre-coated with collagen, Fg, or Fn (10 μg/ml) for 30 min, the percentage (mean % ± SD) of platelets adherent onto one of the immobilized ligands increased significantly by 228±33 (p=0.0112, n=3), 249±42 (p=0.005, n=3), or 198±21 (p=0.0017, n=3), respectively, as compared to adhesion experiments without addition of soluble Fn. By contrast, Fn had an opposing effect on platelet aggregation. Thus, addition of Fn (300 μg/ml) to washed platelets resulted in a reduction of 25 % or 50 % in platelet aggregation induced by PMA (40nM) or collagen (10 μg/ml), respectively. To determine Fn unfolding, the protein was doubly labeled with alexa fluor 488 (donor) randomly at 7–9 amine residues and alexa fluor 546 (acceptor) specifically at 4 free cysteine residues for FRET analyses. To access the sensitivity of FRET for conformational changes in Fn, we exposed labeled Fn to increasing concentrations of GdnHCl (1–4 M) and measured FRET. FRET signals, defined by the ratio of acceptor to donor fluoresecence intensity, varied over the range of GdnHCl concentrations indicating the conformational changes in Fn from its compact to its unfolded state. Fn in its compact conformation (0 M GdnHCl) had a FRET signal of 0.55 (100%) which decreased to 0.34 (63%), as Fn extended in 1 M GdnHCl solution. Further unfolding of Fn in 2 M, 3M and 4 M GdnHCl reduced the FRET signal to 0.27 (50%), 0.23 (44%) and 0.21 (39%), respectively. Addition of labeled Fn to PMA-activated platelets adherent onto immobilized unlabled Fn caused a slow but progressive decrease in FRET signal by 4% at 1 h, 5 % at 2 h and 6% at 3 h incubation. The decrease in FRET signal was reduced to 2% when platelet αvβ3 was blocked by LM609. By contrast, FRET remained unchanged in control experiments without platelets. The same was true when labeled Fn was incubated with PMA-activated platelets in suspension or in the presence of 10E5 (blocking αIIbβ3). Conclusion: Our in vitro studies strongly suggest that fibronectin can play a dual role in hemostasis by promoting platelet adhesion onto immobilized ligands but reducing platelet aggregation. We also demonstrate that activated adherent but not suspended platelets can indeed progressively unfold fibronectin, thereby inducing profound conformational changes that may explain its oppositional effects in platelet adhesion and aggregation. Moreover, our data suggest that unfolding of fibronectin caused by adherent platelets is governed by β3 integrins. Hereby, αIIbβ3 plays a predominant role in comparison to αvβ3. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3442-3442 ◽  
Author(s):  
Reheman Adili ◽  
Theodore R Holman ◽  
Michael Holinstat

Abstract Background: Adequate platelet reactivity is required for platelet adhesion and aggregation at the site of vascular injury to maintain hemostasis. However, excessive platelet reactivity can also lead to the formation of occlusive thrombi, the predominate underlying cause of myocardial infarction and stroke. While current anti-platelet treatments limit platelet function, they often result in an increased risk of bleeding. 12-lipoxygenase (12-LOX), an oxygenase highly expressed in the platelet, has been demonstrated by our lab and others to regulate PAR4 and GPVI-mediated platelet reactivity suggesting a role of 12-LOX in regulation of vivo thrombosis. However, the ability to pharmacologically target 12-LOX in vivo has not been established to date. Aims: To determine how 12-LOX regulates thrombus formation in vivo and whether platelet 12-LOX is an effective target for anti-platelet therapeutics, wild-type (WT) or 12-LOX deficient (12-LOX-/-) mice were treated with or without the 12-LOX inhibitor, ML355, and were assessed for inhibitory effects on platelet activation in vitro, ex-vivo and in vivo. Methods: The effect of the novel 12-LOX inhibitor ML355 on human platelet function was assessed in vitro by platelet aggregometry, ex vivo by perfusion chamber. In vivo thrombus formation and vessel occlusion in small and large vessels were studied in 12-LOX-/-, WT mice and mice treated with ML355 using intravital microscopy using the FeCl3 injury models. Results: Using in vitro platelet aggregation assays, ML355 dose dependently inhibited thrombin, PAR1-AP, and PAR4-AP-induced aggregation in washed human platelets. Interestingly, the negative regulatory effects of ML355 inhibition of 12-LOX can be overcome by high concentration of thrombin. Additionally, ML355 was able to attenuate ADP-induced platelet aggregation both in platelet-rich-plasma and whole blood. In ex vivo flow chamber assays, platelet adhesion and thrombus formation on collagen-coated surfaces at high shear was attenuated in both mouse and human whole blood after incubation with ML355. Further, platelet aggregation and thrombus growth in 12-LOX-/- mice was impaired in FeCl3-induced mesenteric or carotid artery thrombosis models. Thrombi in 12-LOX-/- mice were unstable and frequently form emboli, which resulted in impaired vessel occlusion or reopening. Additionally, thrombus formation and vessel occlusion was impaired in ML355 treated WT mice. Conclusions: The highly selective 12-LOX inhibitor ML355 inhibits platelets aggregation induced by various platelet agonists and ML355 inhibition of platelet function is not agonist specific. Platelet function at high shear in ex vivo conditions in both mice and human was attenuated in the presence of ML355. Thrombus growth, stability, and vessel occlusion was impaired in mice deficient for 12-LOX. Finally, the highly selective 12-LOX inhibitor ML355 attenuates thrombus formation and prevents vessel occlusion in vivo. Our data strongly indicates 12- LOX is an important determinant of platelet reactivity and inhibition of platelet 12-LOX may represent a new target for anti-platelet therapeutics. Disclosures No relevant conflicts of interest to declare.


1989 ◽  
Vol 61 (03) ◽  
pp. 429-436 ◽  
Author(s):  
E J Hornby ◽  
M R Foster ◽  
P J McCabe ◽  
L E Stratton

SummaryGR32191, a potent selective thromboxane receptor antagonist, has been shown to inhibit completely prostaglandin endoperoxide and thromboxane A2 (TxA2)-induced platelet aggregation, [14C]-serotonin secretion and β-thromboglobulin secretion. Deposition of human platelets onto damaged rabbit aorta in vitro is reduced in the presence of GR32191 which appears to inhibit aggregation of platelets but not direct adhesion of platelets to subendothelium. The effects of non-prostanoid platelet activating agents whose mode of action requires the biosynthesis of TxA2 are also inhibited by GR32191. Prostanoids which inhibit platelet function, such as prostacyclin or PGD2, retain their inhibitory properties in the presence of GR32191 which does not inhibit phospholipase A2, prostaglandin cyclooxygenase, thromboxane synthase, 12-lipoxygenase or cAMP phosphodiesterase activity. The inhibitory action of GR32191 on platelet aggregation, mural thrombus formation and platelet protein storage granule secretion suggests that it has potential in treatingthrombotic disease in man.


1985 ◽  
Vol 54 (02) ◽  
pp. 480-484 ◽  
Author(s):  
I A Greer ◽  
J J Walker ◽  
M McLaren ◽  
A A Calder ◽  
C D Forbes

SummaryPlatelet aggregation and thromboxane A2 have been implicated in the pathogenesis of several forms of vascular disease. The aim of this study was to determine the effect of a wide range of adrenoceptor antagonists on platelet aggregation, and thromboxane A2 production, from normal human platelet rich plasma in vitro. Labetalol, pindolol and propranolol inhibited platelet aggregation to collagen in a dose dependent manner. Increasing the concentration of collagen “shifted” the dose response curve to the right. These 3 drugs also significantly inhibited thromboxane A2 generation in response to collagen but not to arachidonic acid. This effect was independent of any inhibitory effect of these drugs on platelet aggregation, and occurred at a drug concentration close to that obtained in vivo. Atenolol, metoprolol, prazosin and timolol were similarly assessed but had no effect on either platelet aggregation or thromboxane A2 generation. This ability of labetalol, pindolol, and propranolol to inhibit platelet aggregation and thromboxane generation, may be of clinical benefit in view of the increasing evidence implicating thromboxane A2 in the pathogenesis of vascular disease.


1998 ◽  
Vol 79 (01) ◽  
pp. 222-227 ◽  
Author(s):  
F. Stockmans ◽  
W. Deberdt ◽  
Å. Nyström ◽  
E. Nyström ◽  
J. M. Stassen ◽  
...  

SummaryIntravenous administration of piracetam to hamsters reduced the formation of a platelet-rich venous thrombus induced by a standardised crush injury, in a dose-dependent fashion with an IC50 of 68 ± 8 mg/kg. 200 mg/kg piracetam also significantly reduced in vivo thrombus formation in rats. However, in vitro aggregation of rat platelets was only inhibited with piracetam-concentrations at least 10-fold higher than plasma concentrations (6.2 ± 1.1 mM) obtained in the treated animals. No effects were seen on clotting tests.In vitro human platelet aggregation, induced by a variety of agonists, was inhibited by piracetam, with IC50’s of 25-60 mM. The broad inhibition spectrum could be explained by the capacity of piracetam to prevent fibrinogen binding to activated human platelets. Ex vivo aggregations and bleeding times were only minimally affected after administration of 400 mg/kg piracetam i.v. to healthy male volunteers, resulting in peak plasma levels of 5.8 ± 0.3 mM.A possible antiplatelet effect of piracetam could be due to the documented beneficial effect on red blood cell deformability leading to a putative reduction of ADP release by damaged erythrocytes. However similarly high concentrations were needed to prevent stirring-induced “spontaneous” platelet aggregation in human whole blood.It is concluded that the observed antithrombotic action of piracetam cannot satisfactorily be explained by an isolated direct effect on platelets. An additional influence of piracetam on the rheology of the circulating blood and/or on the vessel wall itself must therefore be taken into consideration.


Author(s):  
H. Johnson ◽  
J. B. Heywood

Ticlopidine (T) is weakly active in vitro, but is a potent inhibitor of platelet aggregation induced by ADP, collagen, thrombin, adrenaline, arachidonic acid, prostaglandin (PG) endoperoxide and thromboxane A2 with a sustained effect, when administered to a variety of animal species, including man. Platelets from treated animals were normal in ultrastructure and 14C-ADP binding was not modified by T. Basal PG synthesis was unaffected, whereas aspirin (A) had a marked inhibitory effect. Platelet cyclo-oxygenase and thromboxane synthetase activities were 90.6±12.9 and 96.1±5.3% of control following T treatment. In contrast to A, T had no effect on vascularprostacyclin (PGI2) synthesis, this being 1.4±0.1, 0.5±0.1 and 1.3±0. 3ng/mg wet weight aorta in T and A-treated and control animals respectively. Platelets from T-treated rats were significantly more responsive to inhibition by exogenous PGI2 (0.2-4 ng/ml) and PGE1 (4- 20 ng/ml). when compared with controls. T administration (30-300 mg/kg) resulted in a dose-dependent inhibition of ADP-induced platelet aggregation (26.0- 87. 5%) and enhancement of platelet reactivity to PGI2 (37.0-159.8%). There was a good correlation between these parameters (r=+0.994). T is a potent inhibitor of platelet aggregati on with a novel mode of action. It is not aspirin-like, but may act to potentiate endogenous PGI2 in vivo, possibly through an effect on platelet adenylate cyclase.


Sign in / Sign up

Export Citation Format

Share Document