Tissue Factor Activity of Syncytiotrophoblast Plasma Membranes and Tumoral Trophoblast Cells in Culture

1995 ◽  
Vol 73 (01) ◽  
pp. 049-054 ◽  
Author(s):  
P Reverdiau ◽  
A C Jarousseau ◽  
G Thibault ◽  
B Khalfoun ◽  
H Watier ◽  
...  

SummaryDuring pregnancy, important modifications of hemostasis occur resulting in mothers in hypercoagulability and the role of placental cells such as trophoblast cells has been hypothesized. In this study, we first showed that syncytiotrophoblast plasma membranes, isolated from normal human placenta, expressed a strong tissue factor (TF) activity. We then studied TF activity of two continuous trophoblast cell lines (JEG-3 and BeWo) in comparison to human umbilical vein endothelial cells (HUVEC) and transformed human endothelial cells (ECV-304). TF assays were performed on intact detached confluent cells. Unstimulated JEG-3 and BeWo cells exhibited a very high TF activity which slightly increased after 2 to 4 h TNF-α stimulation. In contrast, HUVEC and ECV-304 had a lower basal TF activity which was mainly inducible by TNF-a, with a maximum effect after 4 to 6 h stimulation. For both cell types, TF activity was decreased to basal value after 16-hour TNF-α stimulation. These results support that trophoblast cells are able to express TF but the involvement of this property in the hemostatic physiological changes observed during pregnancy, remains to be demonstrated.

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Serena Del Turco ◽  
Giuseppina Basta ◽  
Guido Lazzerini ◽  
Laurent Chancharme ◽  
Laurence Lerond ◽  
...  

Background Tissue factor (TF) expression and surface exposure are key events in thrombosis, likely contributing to clinical events in vascular disease. Thromboxane (TX)A 2 , an unstable metabolite of arachidonic acid released from vaious cell types, is known for its pro-aggregating and vasoconstrictor properties. Cellular effects of TXA 2 are effected through the TP (TX-prostaglandin endoperoxide) receptor, also expressed in endothelial cells (EC). The TP receptor antagonist S 18886 (Terutroban) demonstrated antithrombotic and antiatherogenic effects in activated EC. As the underlying molecular mechanisms are largely unexplored, we studied the effects of TP agonism and of antagonism on TF expression and procoagulant activity in human umbilical vein endothelial cells (HUVEC), and signal transduction pathways involved. Methods and Results HUVEC ± 30 min pretreatment with the TP antagonist S 18886 were stimulated with the TP receptor agonist U 46619 or TNF-α for 6 hours. TF total expression and surface exposure were assessed by enzyme immunoassays, and TF-dependent procoagulant activity by the generation of Factor Xa. HUVEC exposed to U 46619 featured a concentration-dependent increase in TF total expression and surface exposure. These were associated with enhanced procoagulant activity. S 18886 (1 μmol/L) significantly reduced U 46619 (1 μM)-induced TF expression (−20% ± 7%, P<0.05) and procoagulant activity (−32% ± 11%, P<0.05). Interestingly, S 18886 (1 μmol/L) prevented the increase of TF expression after TNF-α (20 ng/mL) stimulation (−25% ± 9%, P<0.05). Both U 46619- and TNF-α-induced TF expression were mediated by the increase of intracellular reactive oxygen species (ROS), and this was inhibited by S 18886 (−44% ± 6% and −24% ± 5% P<0.05, respectively). S 18886 decreased the membrane association of p47-phox component of NADP(H) oxidase, accounting for the reduced production of ROS. Conclusions Our results show that endothelial TP receptor mediates TF expression, surface exposure and activity stimulated both by TP agonists and by TNF-α. This occurs through NADP(H) oxidase activation and the consequent generation of ROS. These procoagulant and oxidant pathways are inhibited by the TP receptor antagonist S 18886.


2009 ◽  
Vol 17 (2) ◽  
pp. 42-45 ◽  
Author(s):  
Natalie Bauer ◽  
Jyoti Rai ◽  
Hairu Chen ◽  
Lillianne Harris ◽  
Lalita Shevde ◽  
...  

Microparticles and exosomes are small vesicular fragments of cell membrane which are released from activated and apoptotic cells. Microparticles (MPs) range in size from 0.5-1.5 μm, and exosomes are 0.5 μm and under. For the purposes of this article we will refer to both categories as microparticles. They differ from apoptotic bodies based on their smaller size, intact structure, and lack of degraded nuclear material. MPs have been shown to be released from a variety of cell types including platelets, endothelium, vascular smooth muscle cells, dendritic cells, and tumor cells. Jimenez and others have shown that based on the stimulus and cell type the MPs released are both quantitatively and phenotypically distinct. More recent data have shown the proteomics of MPs released from human umbilical vein endothelial cells differ dependent on whether they are stimulated with PAI or TNF-α.


2018 ◽  
Vol 25 (5) ◽  
pp. e12408 ◽  
Author(s):  
Hanchao Gao ◽  
Qing Zhang ◽  
Jicheng Chen ◽  
David K.C. Cooper ◽  
Hidetaka Hara ◽  
...  

1989 ◽  
Vol 61 (01) ◽  
pp. 101-105 ◽  
Author(s):  
Bonnie J Warn-Cramer ◽  
Fanny E Almus ◽  
Samuel I Rapaport

SummaryCultured human umbilical vein endothelial cells (HUVEC) have been reported to produce extrinsic pathway inhibitor (EPI), the factor Xa-dependent inhibitor of factor VHa/tissue factor (TF). We examined the release of this inhibitor from HUVEC as a function of their growth state and in response to the induction of endothelial cell TF activity. HUVEC constitutively produced significant amounts of EPI at all stages of their growth in culture including the post-confluent state. Rate of release varied over a 3-fold range for primary cultures from 12 different batches of pooled umbilical cord cells. Constitutive EPI release was unaltered during a 6 hour period of induction of TF activity with thrombin or phorbol ester but slowed during longer incubation of the cells with phorbol ester. Whereas plasma contains two molecular weight forms of EPI, only the higher of these two molecular weight forms was demonstrable by Western analysis of HUVEC supernatants with 125I-factor Xa as the ligand.


1987 ◽  
Author(s):  
K T Preissner ◽  
E Anders ◽  
G Müller-Berghaus

The interaction of the complement inhibitor S protein, which is identical to the serum spreading factor, vitronectin, with cultured human endothelial cells of macro- and microvas- cular origin was investigated. Purified S protein, coated for 2 h on polystyrene petri dishes, induced concentration- and time-dependent attachment and spreading of human umbilical vein endothelial cells (HUVEC) as well as human omental tissqe microvasular endothelial cells (HOTMEC) at 37°C. With 3 × 105 cells/ml (final concentration) more than 50% of the cells attached within 2 h incubation at 0.3 - 3 μg/ml S protein. The effect of S protein was specific, since only monospecific antibodies against S protein prevented attachment of cells, while antibodies against fibronectin, fibrinogen or von Wille-brand factor were uneffective. The pentapeptide Gly-Arg-Gly-Asp-Ser, which contains the cell-attachment site of these adhesive proteins including S protein, inhibited the activity of S protein to promote attachment of endothelial cells in a concentration-dependent fashion; at 200 μM peptide, less than 10% of the cells became attached. Direct binding of S protein to HUVEC and HOTMEC was studied with cells in suspension at a concentration of 1 × 106 cells/ml in the presence of 1% (w/v) human serum albumin and 1 mM CaCl2 and was maximal after 120 min. Both cell types bound S protein in a concentration-dependent fashion with an estimated dissociation constant KD=0.2pM. More than 80% of bound radiolabelled S protein was displaced by unlabelled S protein, whereas binding was reduced to about 50% by the addition in excess of either fibronectin, fibrinogen, von Willebrand factor or the pentapeptide. These findings provide evidence for the specific association of S protein with endothelial cells, ultimately leading to attachment and spreading of cells. Although the promotion of attachment was highly specific for S protein, other adhesive proteins than S protein, also known to associate with endothelial cells, may in part compete with direct S protein binding.


2007 ◽  
Vol 114 (2) ◽  
pp. 180-185 ◽  
Author(s):  
Jianlin Huang ◽  
Zhuofeng Lin ◽  
Minqi Luo ◽  
Caisheng Lu ◽  
Michelle H. Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document