Abstract 713: S 18886 Inhibits Thromboxane A 2 Receptor-dependent Tissue Factor Expression, Procoagulant Activity And NADP(H) Oxidase Activation In Stimulated Endothelial Cells

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Serena Del Turco ◽  
Giuseppina Basta ◽  
Guido Lazzerini ◽  
Laurent Chancharme ◽  
Laurence Lerond ◽  
...  

Background Tissue factor (TF) expression and surface exposure are key events in thrombosis, likely contributing to clinical events in vascular disease. Thromboxane (TX)A 2 , an unstable metabolite of arachidonic acid released from vaious cell types, is known for its pro-aggregating and vasoconstrictor properties. Cellular effects of TXA 2 are effected through the TP (TX-prostaglandin endoperoxide) receptor, also expressed in endothelial cells (EC). The TP receptor antagonist S 18886 (Terutroban) demonstrated antithrombotic and antiatherogenic effects in activated EC. As the underlying molecular mechanisms are largely unexplored, we studied the effects of TP agonism and of antagonism on TF expression and procoagulant activity in human umbilical vein endothelial cells (HUVEC), and signal transduction pathways involved. Methods and Results HUVEC ± 30 min pretreatment with the TP antagonist S 18886 were stimulated with the TP receptor agonist U 46619 or TNF-α for 6 hours. TF total expression and surface exposure were assessed by enzyme immunoassays, and TF-dependent procoagulant activity by the generation of Factor Xa. HUVEC exposed to U 46619 featured a concentration-dependent increase in TF total expression and surface exposure. These were associated with enhanced procoagulant activity. S 18886 (1 μmol/L) significantly reduced U 46619 (1 μM)-induced TF expression (−20% ± 7%, P<0.05) and procoagulant activity (−32% ± 11%, P<0.05). Interestingly, S 18886 (1 μmol/L) prevented the increase of TF expression after TNF-α (20 ng/mL) stimulation (−25% ± 9%, P<0.05). Both U 46619- and TNF-α-induced TF expression were mediated by the increase of intracellular reactive oxygen species (ROS), and this was inhibited by S 18886 (−44% ± 6% and −24% ± 5% P<0.05, respectively). S 18886 decreased the membrane association of p47-phox component of NADP(H) oxidase, accounting for the reduced production of ROS. Conclusions Our results show that endothelial TP receptor mediates TF expression, surface exposure and activity stimulated both by TP agonists and by TNF-α. This occurs through NADP(H) oxidase activation and the consequent generation of ROS. These procoagulant and oxidant pathways are inhibited by the TP receptor antagonist S 18886.

1995 ◽  
Vol 73 (01) ◽  
pp. 049-054 ◽  
Author(s):  
P Reverdiau ◽  
A C Jarousseau ◽  
G Thibault ◽  
B Khalfoun ◽  
H Watier ◽  
...  

SummaryDuring pregnancy, important modifications of hemostasis occur resulting in mothers in hypercoagulability and the role of placental cells such as trophoblast cells has been hypothesized. In this study, we first showed that syncytiotrophoblast plasma membranes, isolated from normal human placenta, expressed a strong tissue factor (TF) activity. We then studied TF activity of two continuous trophoblast cell lines (JEG-3 and BeWo) in comparison to human umbilical vein endothelial cells (HUVEC) and transformed human endothelial cells (ECV-304). TF assays were performed on intact detached confluent cells. Unstimulated JEG-3 and BeWo cells exhibited a very high TF activity which slightly increased after 2 to 4 h TNF-α stimulation. In contrast, HUVEC and ECV-304 had a lower basal TF activity which was mainly inducible by TNF-a, with a maximum effect after 4 to 6 h stimulation. For both cell types, TF activity was decreased to basal value after 16-hour TNF-α stimulation. These results support that trophoblast cells are able to express TF but the involvement of this property in the hemostatic physiological changes observed during pregnancy, remains to be demonstrated.


1989 ◽  
Vol 61 (01) ◽  
pp. 101-105 ◽  
Author(s):  
Bonnie J Warn-Cramer ◽  
Fanny E Almus ◽  
Samuel I Rapaport

SummaryCultured human umbilical vein endothelial cells (HUVEC) have been reported to produce extrinsic pathway inhibitor (EPI), the factor Xa-dependent inhibitor of factor VHa/tissue factor (TF). We examined the release of this inhibitor from HUVEC as a function of their growth state and in response to the induction of endothelial cell TF activity. HUVEC constitutively produced significant amounts of EPI at all stages of their growth in culture including the post-confluent state. Rate of release varied over a 3-fold range for primary cultures from 12 different batches of pooled umbilical cord cells. Constitutive EPI release was unaltered during a 6 hour period of induction of TF activity with thrombin or phorbol ester but slowed during longer incubation of the cells with phorbol ester. Whereas plasma contains two molecular weight forms of EPI, only the higher of these two molecular weight forms was demonstrable by Western analysis of HUVEC supernatants with 125I-factor Xa as the ligand.


1997 ◽  
Vol 77 (05) ◽  
pp. 0975-0980 ◽  
Author(s):  
Angel Gálvez ◽  
Goretti Gómez-Ortiz ◽  
Maribel Díaz-Ricart ◽  
Ginés Escolar ◽  
Rogelio González-Sarmiento ◽  
...  

SummaryThe effect of desmopressin (DDAVP) on thrombogenicity, expression of tissue factor and procoagulant activity (PCA) of extracellular matrix (ECM) generated by human umbilical vein endothelial cells cultures (HUVEC), was studied under different experimental conditions. HUVEC were incubated with DDAVP (1, 5 and 30 ng/ml) and then detached from their ECM. The reactivity towards platelets of this ECM was tested in a perfusion system. Coverslips covered with DD A VP-treated ECMs were inserted in a parallel-plate chamber and exposed to normal blood anticoagulated with low molecular weight heparin (Fragmin®, 20 U/ml). Perfusions were run for 5 min at a shear rate of 800 s1. Deposition of platelets on ECMs was significantly increased with respect to control ECMs when DDAVP was used at 5 and 30 ng/ml (p <0.05 and p <0.01 respectively). The increase in platelet deposition was prevented by incubation of ECMs with an antibody against human tissue factor prior to perfusion. Immunofluorescence studies positively detected tissue factor antigen on DDAVP derived ECMs. A chromogenic assay performed under standardized conditions revealed a statistically significant increase in the procoagulant activity of the ECMs produced by ECs incubated with 30 ng/ml DDAVP (p <0.01 vs. control samples). Northern blot analysis revealed increased levels of tissue factor mRNA in extracts from ECs exposed to DDAVP. Our data indicate that DDAVP in vitro enhances platelet adhesion to the ECMs through increased expression of tissue factor. A similar increase in the expression of tissue factor might contribute to the in vivo hemostatic effect of DDAVP.


Blood ◽  
1997 ◽  
Vol 89 (2) ◽  
pp. 541-549 ◽  
Author(s):  
Emanuela Napoleone ◽  
Angelomaria Di Santo ◽  
Roberto Lorenzet

Abstract Monocytes and endothelial cells interact at sites of vascular injury during inflammatory response, thrombosis, and development of atherosclerotic lesions. Such interactions result in modulation of several biological functions of the two cell types. Because both cells, on appropriate stimulation, synthesize tissue factor (TF), we examined the effect of human umbilical vein endothelial cell (HUVEC)/monocyte coculture on the expression of TF. We found that the coincubation resulted in TF generation, which was maximal at 4 hours, increased with increasing numbers of monocytes, and required mRNA and protein synthesis. Supernatant from HUVEC/monocyte coculture induced TF activity in HUVECs, but not in monocytes, indicating that HUVEC were the cells responsible for the activity, and that soluble mediators were involved. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), well-known inducers of TF in HUVECs, were found in the supernatant from the coculture, and specific antibodies directed against either cytokine inhibited TF generation. The need of IL-1β and TNF-α synthesis in order to elicit TF expression was also suggested by the delay observed in TF mRNA formation and TF activity generation when monocytes were incubated with HUVECs. IL-1β and TNF-α antigen levels in the coculture supernatant, and, consequently, HUVEC TF expression, were inhibited in the presence of anti-CD18 monoclonal antibody. These findings emphasize the role of cell-cell contact and cross-talk in the procoagulant activity, which could be responsible for the thromboembolic complications observed in those vascular disorders in which monocyte infiltration is a common feature.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3265-3270 ◽  
Author(s):  
EF Grabowski ◽  
DB Zuckerman ◽  
Y Nemerson

Abstract The expression of tissue factor (TF) by a variety of vascular cell types under physiologic flow conditions is critical to factor X activation and in vivo clotting. Therefore, in a parallel-plate flow chamber (volume 40 microL) we mounted monolayers of human embryonic fibroblasts (FBs) or interleukin-1 alpha (IL-1 alpha) (5 U/mL x 4 hours)-stimulated human umbilical vein endothelial cells (ECs). Inflow buffer contained 10 nmol/L factor VIIa, 100 nmol/L factor X, and 2.0 mmol/L CaCl. With FBs, production of factor Xa (product of outflow concentration of factor Xa-and flow rate) increased 200-fold over the range of shear stress from 0 to 2.7 dynes/cm2. Production values (mean +/- SE (N)) were 7.93 +/- 0.024 (6), 312 +/- 7.3 (6), 688 +/- 33.1 (8), 1,033 +/- 119 (6), and 1,601 +/- 183 (7) fmol/cm2.minute at shear stresses of 0, 0.27, 0.68, 1.35, and 2.7 dynes/cm2, respectively. Further experiments at 0.68 dynes/cm2 indicated that factor Xa production increased with factor X concentration over the range from 3 to 100 nmol/L, but changed little from 300 to 1,000 nmol/L. With ECs, production was 0.13 +/- 0.86 (6), 8.17 +/- 1.65 (13), and 1.66 +/- 1.66 (5) fmol/cm2.minute at 0, 0.68, and 2.7 dynes/cm2, respectively. However, in the presence of an antibody directed against tissue factor pathway inhibitor (TFPI) production with ECs was augmented to 16.46 +/- 0.80 (8), 149.8 +/- 18.6 (8), and 48.9 +/- 10.3 (10), respectively, at these same shear stresses. Control experiments with factor VIIa, factor X, or both absent confirm for both cell types the specificity of the reaction for the TF pathway. Similarly, specificity for TF itself is shown by the virtual absence of factor Xa generation in the presence of the monoclonal antibody HTF1–7B8 directed against human TF. We conclude that ECs, even when activated, are normally unable to generate significant quantities of factor Xa in the presence of factors X and VIIa. However, significant quantities of factor Xa are possible in the presence of an inhibitor of TFPI. On the other hand, production of factor Xa by fibroblasts is markedly augmented by shear stress, yet independent of the availability of substrate factor X above an inflow concentration of 100 nmol/L. The latter suggests a direct effect of flow on the fibroblast monolayers, not substrate limitation by convective diffusion.


1999 ◽  
Vol 82 (10) ◽  
pp. 1334-1341 ◽  
Author(s):  
Michael Krebs ◽  
Christoph Kaun ◽  
Matthias Lorenz ◽  
Marianne Haag-Weber ◽  
Bernd Binder ◽  
...  

SummaryIncubation of cultured human umbilical vein endothelial cells (HUVECs) with dilutions of peritoneal dialysis effluents (PDEs) from 11 individual patients undergoing continuous ambulatory peritoneal dialysis (CAPD) induced cellular procoagulant activity in a dose and time dependent manner. This procoagulant activity could be attributed to tissue factor (TF) expression since it was blocked by rabbit anti-TF IgG. These data was confirmed by FACS analysis yielding surface TF expression; In addition PDEs induced the expression of E-selectin in HUVECs. This TF and selectin inducing activity was heat labile and could be inhibited by protease inhibitors. Partial purification could be achieved using a benzamidine-Sepharose column. The TF inducing activity could not be attributed to LPS, IL-1, TNF-α, mast cell tryptase, active thrombin, or complement factor D. We therefore conclude that the peritoneal cavity contains a protease activity that induces a procoagulatory and proinflammatory phenotype in HUVECs.


1998 ◽  
Vol 79 (05) ◽  
pp. 1025-1028 ◽  
Author(s):  
Ling Zhou ◽  
Patrick Stordeur ◽  
Aurore de Lavareille ◽  
Kris Thielemans ◽  
Paul Capel ◽  
...  

SummaryThe CD40 molecule expressed on endothelial cells has been shown to transduce activation signals resulting in upregulation of adhesion molecules. Herein, we studied the impact of CD40 engagement on the induction of tissue factor (TF)-dependent procoagulant activity (PCA) at the surface of human umbilical vein endothelial cells (HUVECs). First, we found that co-incubation of HUVECs with 3T6 fibroblasts transfected with the CD40L gene (3T6-CD40L) resulted in a clear induction of PCA which was not observed with control untransfected fibroblasts. The specificity of this finding was established by inhibition experiments using monoclonal antibodies (mAbs) blocking CD40 or CD40L. PCA induced by CD40 ligation was TF-related as it was not observed in factor VII-deficient plasma and was associated with the accumulation of TF mRNA. To investigate the role of CD40/CD40L interactions in the induction of endothelial cell PCA by lymphocytes, interferon (IFN)-γ-stimulated EC were incubated with T cells in the absence or presence of anti-CD40 or anti-CD40L mAb. The 60-70% inhibition of PCA induced by these mAbs but not their isotype-matched control indicated that the CD40 pathway is involved in the induction of PCA resulting from interactions between activated HUVECs and T cells. We conclude that activation signals elicited by CD40 engagement on endothelial cells result in the induction of TF-dependent PCA. The CD40/CD40L pathway might therefore be involved in the development of prothrombic states during diseases associated with endothelial cell and T cell activation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 372-372
Author(s):  
Jialan Shi ◽  
Dessislava N. Nikova ◽  
Gary E. Gilbert

Abstract Abstract 372 The dependence of procoagulant activity on phosphatidylserine (PS) has been recognized for at least four decades but the location of physiologically relevant membranes with PS exposure remains uncertain. PS is exposed on apoptotic cells and cell microparticles but in vitro and in vivo studies have failed to demonstrate a clear relationship of microparticles or apoptotic cells to fibrin deposition. Exposure of endothelial cells to stimulants or toxins leads to retraction of cell margins, mounding of the central cell, and extension of filopodia. We have also found that cell stress also leads to limited, focal PS exposure. Furthermore, we found that binding sites for lactadherin, a PS-binding protein that shares homology with factor VIII and factor V, are concentrated on convex surfaces such as filopodia. In this study we ask whether the limited, focal PS exposure on stressed human umbilical vein endothelial cells is sufficient to support prothrombinase complex assembly and whether the prothrombinase complex assembly is restricted to the convex membrane features that bind lactadherin. We allowed Human Umbilical Vein Endothelial Cells (HUVEC) to grow to confluent monolayers prior to exposure to TNF-α, 10 ng/ml, for 5–24 hours. PS exposure was detected by simultaneous staining using 10 nM lactadherin–Alexa 488 and annexin V–Cy 3.18, both exhibiting high affinity for PS. Stressed cells withdrew from their prior borders, leaving residual fibrils connected to original attachment points. In addition, they extended filopodia that were up to several cell diameters in length. Confocal microscopy demonstrated focal staining of filopodia, fibrils and cell margins with lactadherin and patches near the nucleus with annexin A5. We asked whether the selective binding might be determined by the membrane topology. To mimic the curvature of a cell membrane we prepared nano-fabricated silica substrates with ridge radii of 10 nm. The AFM topographic and fluorescent images of synthetic membrane bilayers supported by the substrates showed that, over a PS content of 4–15%, lactadherin preferentially binds to the convex nano-ridges with a ridge: valley staining ratio >80:1, while annexin V selectively binds the concave areas of the nano-trenches with a ridge. Combined fluorescence/AFM imaging of TNF-α treated HUVEC's, demonstrated that the new thin filaments staining with lactadherin had radii of curvature of approx. 12 nm, similar to the ridges of our synthetic bilayers. We asked whether factor Va and factor Xa share preference for convex surfaces, analogous to lactadherin. Supported membranes of 4% PS had preferential ridge staining by factor Va-fluorescein-maleimide with a ridge/valley ratio > 10/1. Co-staining with factor Va and factor Xa-EGRck-biotin (complexed to Alexa 647-steptavidin) indicated that factor Va enhanced binding of factor Xa to ridges, thus the prothrombinase complex has highly preferential binding to convex ridges. TNF-α-treated endothelial cells bound factor Va, like lactadherin, selectively on filopodia and fibrils near the retracted edges of endothelial cells. Factor Xa also localized to these features in the presence of factor Va, indicating prothrombinase complex assembly. Stressed endothelial cells exhibited at least 8-fold higher support for thrombin production and prothrombinase activity. Prothrombinase activity was efficiently inhibited by lactadherin, demonstrating that the lactadherin-binding sites were the functional sites for prothrombinase activity. Together, these data indicate that stressed endothelial cells can support the prothrombinase complex and that prothrombinase activity is compartmentalized near the periphery of the cell and in the intracellular area through binding sites on highly convex membrane features with exposed PS. We have hypothesized that this compartment of procoagulant activity is relatively protected from anti-coagulant proteins that are localized elsewhere on the stimulated/stressed endothelial cell. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 110 (4) ◽  
pp. 587-598 ◽  
Author(s):  
Audrey Chanet ◽  
Dragan Milenkovic ◽  
Sylvain Claude ◽  
Jeanette A. M. Maier ◽  
Muhammad Kamran Khan ◽  
...  

Flavanones are found specifically and abundantly in citrus fruits. Their beneficial effect on vascular function is well documented. However, little is known about their cellular and molecular mechanisms of action in vascular cells. The goal of the present study was to identify the impact of flavanone metabolites on endothelial cells and decipher the underlying molecular mechanisms of action. We investigated the impact of naringenin and hesperetin metabolites at 0·5, 2 and 10 μm on monocyte adhesion to TNF-α-activated human umbilical vein endothelial cells (HUVEC) and on gene expression. Except hesperetin-7-glucuronide and naringenin-7-glucuronide (N7G), when present at 2 μm, flavanone metabolites (hesperetin-3′-sulphate, hesperetin-3′-glucuronide and naringenin-4′-glucuronide (N4′G)) significantly attenuated monocyte adhesion to TNF-α-activated HUVEC. Exposure of both monocytes and HUVEC to N4′G and N7G at 2 μm resulted in a higher inhibitory effect on monocyte adhesion. Gene expression analysis, using TaqMan Low-Density Array, revealed that flavanone metabolites modulated the expression of genes involved in atherogenesis, such as those involved in inflammation, cell adhesion and cytoskeletal organisation. In conclusion, physiologically relevant concentrations of flavanone metabolites reduce monocyte adhesion to TNF-α-stimulated endothelial cells by affecting the expression of related genes. This provides a potential explanation for the vasculoprotective effects of flavanones.


Author(s):  
Pierre R. Moreau ◽  
Vanesa Tomas Bosch ◽  
Maria Bouvy-Liivrand ◽  
Kadri Õunap ◽  
Tiit Örd ◽  
...  

Objective: Atherosclerosis is the underlying cause of most cardiovascular diseases. The main cell types associated with disease progression in the vascular wall are endothelial cells, smooth muscle cells, and macrophages. Although their role in atherogenesis has been extensively described, molecular mechanisms underlying gene expression changes remain unknown. The objective of this study was to characterize microRNA (miRNA)-related regulatory mechanisms taking place in the aorta during atherosclerosis: Approach and Results: We analyzed the changes in primary human aortic endothelial cells and human umbilical vein endothelial cell, human aortic smooth muscle cell, and macrophages (CD14+) under various proatherogenic stimuli by integrating GRO-seq, miRNA-seq, and RNA-seq data. Despite the highly cell-type-specific expression of multi-variant pri-miRNAs, the majority of mature miRNAs were found to be common to all cell types and dominated by 2 to 5 abundant miRNA species. We demonstrate that transcription contributes significantly to the mature miRNA levels although this is dependent on miRNA stability. An analysis of miRNA effects in relation to target mRNA pools highlighted pathways and targets through which miRNAs could affect atherogenesis in a cell-type-dependent manner. Finally, we validate miR-100-5p as a cell-type specific regulator of inflammatory and HIPPO-YAP/TAZ-pathways. Conclusions: This integrative approach allowed us to characterize miRNA dynamics in response to a proatherogenic stimulus and identify potential mechanisms by which miRNAs affect atherogenesis in a cell-type-specific manner.


Sign in / Sign up

Export Citation Format

Share Document