Carbenoid-Mediated Homologation Tactics for Assembling (Fluorinated) Epoxides and Aziridines

Synlett ◽  
2020 ◽  
Author(s):  
Laura Ielo ◽  
Vittorio Pace ◽  
Veronica Pillari ◽  
Margherita Miele ◽  
Davide Castiglione

Homologation strategies provide highly versatile tools in organic synthesis for the introduction of a CH2 group into a given carbon skeleton. The operation can result in diverse structural motifs by tuning of the reaction conditions and the nature of the homologating agent. In this Account, concisely contextualizing our work with lithium carbenoids (LiCH2X, LiCHXY etc) for homologating carbon-centered electrophiles, we focus on the assembly of three-membered cycles featuring fluorinated substituents. Two illustrative case studies are considered: (1) the development and employment of fluorinated carbenoids en route to rare α-fluoroepoxides and aziridines, and (2) the installation of up to halomethylenic groups on trifluoroimidoylacetyl chlorides (TFAICs) for preparing CF3-containing halo- and halomethylaziridines. Collectively, we demonstrate that the initial homologation event generated by the installation of the carbenoid, upon modulation of the conditions, serves as a tool for creating fluorinated building blocks in a single operation.

2011 ◽  
Vol 65 (3) ◽  
Author(s):  
Selvaraj Roopan ◽  
Fazlur-Rahman Khan ◽  
Jong Jin

AbstractThe Mitsunobu reaction is a well-established fundamental reaction and has been widely applied in organic synthesis. In this paper, under Mitsunobu conditions dehydration proceeds between (2-chloroquinolin-3-yl)methanol and nitrogen heterocyclic compounds such as quinazolinone, pyrimidone, 2-oxoquinoline in dry THF in the presence of triethylamine, triphenylphosphane and diethyl azodicarboxylate to give the corresponding products. As part of our recent research, we attempted to couple two N-heterocyclic compounds under Mitsunobu reaction conditions to provide efficient building blocks for natural product synthesis.


Organics ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 287-305
Author(s):  
Matthieu Pélingre ◽  
Dindet Steve-Evanes Koffi Teki ◽  
Jamal El-Abid ◽  
Vincent Chagnault ◽  
José Kovensky ◽  
...  

Many preparations of maltooligosaccharides have been described in literature, essentially using enzymatic or biotechnological processes. These compounds, derived from starch, are well-known as prebiotic agents. The use of maltohexa-, hepta-, and octaoses as synthons in organic synthesis was also well documented in literature. They can indeed be obtained as single compounds by the cyclodextrins’ ring-opening. This reaction has been studied for many years, varying the protecting and functional groups and the reaction conditions, leading to functionalized oligomaltoses. These compounds are of wide interest in various fields. They have a strong potential as scaffolds for multivalence in chemobiology, as building blocks for the production of biomimetic pseudo-glycopeptides, as well as monomers for the preparation of materials. In view of the importance of these oligomaltoses, this review focuses on the different methodologies allowing access to them via chemical and enzymatic ring-opening of cyclodextrins.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Liang Ge ◽  
Ding-Xing Wang ◽  
Renyi Xing ◽  
Di Ma ◽  
Patrick J. Walsh ◽  
...  

Abstract Cyclopropanes represent a class of versatile building blocks in modern organic synthesis. While the release of ring strain offers a thermodynamic driving force, the control of selectivity for C–C bond cleavage and the subsequent regiochemistry of the functionalization remains difficult, especially for unactivated cyclopropanes. Here we report a photoredox-coupled ring-opening oxo-amination of electronically unbiased cyclopropanes, which enables the expedient construction of a host of structurally diverse β-amino ketone derivatives. Through one electron oxidation, the relatively inert aryl cyclopropanes are readily converted into reactive radical cation intermediates, which in turn participate in the ensuing ring-opening functionalizations. Based on mechanistic studies, the present oxo-amination is proposed to proceed through an SN2-like nucleophilic attack/ring-opening manifold. This protocol features wide substrate scope, mild reaction conditions, and use of dioxygen as an oxidant both for catalyst regeneration and oxygen-incorporation. Moreover, a one-pot formal aminoacylation of olefins is described through a sequential cyclopropanation/oxo-amination.


2017 ◽  
Vol 82 (10) ◽  
pp. 5274-5284 ◽  
Author(s):  
Vladimir A. Motornov ◽  
Vasiliy M. Muzalevskiy ◽  
Andrey A. Tabolin ◽  
Roman A. Novikov ◽  
Yulia V. Nelyubina ◽  
...  

Author(s):  
Alex L. Bagdasarian ◽  
Stasik Popov ◽  
Benjamin Wigman ◽  
Wenjing Wei ◽  
woojin lee ◽  
...  

Herein we report the 3,5bistrifluoromethylphenyl urea-catalyzed functionalization of unactivated C–H bonds. In this system, the urea catalyst mediates the formation of high-energy vinyl carbocations that undergo facile C–H insertion and Friedel–Crafts reactions. We introduce a new paradigm for these privileged scaffolds where the combination of hydrogen bonding motifs and strong bases affords highly active Lewis acid catalysts capable of ionizing strong C–O bonds. Despite the highly Lewis acidic nature of these catalysts that enables triflate abstraction from sp<sup>2</sup> carbons, these newly found reaction conditions allow for the formation of heterocycles and tolerate highly Lewis basic heteroaromatic substrates. This strategy showcases the potential utility of dicoordinated vinyl carbocations in organic synthesis.<br>


2020 ◽  
Author(s):  
Alex L. Bagdasarian ◽  
Stasik Popov ◽  
Benjamin Wigman ◽  
Wenjing Wei ◽  
woojin lee ◽  
...  

Herein we report the 3,5bistrifluoromethylphenyl urea-catalyzed functionalization of unactivated C–H bonds. In this system, the urea catalyst mediates the formation of high-energy vinyl carbocations that undergo facile C–H insertion and Friedel–Crafts reactions. We introduce a new paradigm for these privileged scaffolds where the combination of hydrogen bonding motifs and strong bases affords highly active Lewis acid catalysts capable of ionizing strong C–O bonds. Despite the highly Lewis acidic nature of these catalysts that enables triflate abstraction from sp<sup>2</sup> carbons, these newly found reaction conditions allow for the formation of heterocycles and tolerate highly Lewis basic heteroaromatic substrates. This strategy showcases the potential utility of dicoordinated vinyl carbocations in organic synthesis.<br>


2019 ◽  
Author(s):  
De-Wei Gao ◽  
Yang Gao ◽  
Huiling Shao ◽  
Tian-Zhang Qiao ◽  
Xin Wang ◽  
...  

Enantioenriched <i>α</i>-aminoboronic acids play a unique role in medicinal chemistry and have emerged as privileged pharmacophores in proteasome inhibitors. Additionally, they represent synthetically useful chiral building blocks in organic synthesis. Recently, CuH-catalyzed asymmetric alkene hydrofunctionalization has become a powerful tool to construct stereogenic carbon centers. In contrast, applying CuH cascade catalysis to achieve reductive 1,1-difunctionalization of alkynes remains an important, but largely unaddressed, synthetic challenge. Herein, we report an efficient strategy to synthesize <i>α</i>-aminoboronates <i>via </i>CuH-catalyzed hydroboration/hydroamination cascade of readily available alkynes. Notably, this transformation selectively delivers the desired 1,1-heterodifunctionalized product in favor of alternative homodifunctionalized, 1,2-heterodifunctionalized, or reductively monofunctionalized byproducts, thereby offering rapid access to these privileged scaffolds with high chemo-, regio- and enantioselectivity.<br>


2020 ◽  
Vol 17 (7) ◽  
pp. 540-547
Author(s):  
Chun-Hui Yang ◽  
Cheng Wu ◽  
Jun-Ming Zhang ◽  
Xiang-Zhang Tao ◽  
Jun Xu ◽  
...  

Background: The sulfinic esters are important and useful building blocks in organic synthesis. Objective: The aim of this study was to develop a simple and efficient method for the synthesis of sulfinic esters. Materials and Methods: Constant current electrolysis from thiols and alcohols was selected as the method for the synthesis of sulfinic esters. Results and Discussion: A novel electrochemical method for the synthesis of sulfinic esters from thiophenols and alcohols has been developed. Up to 27 examples of sulfinic esters have been synthesized using the current methods. This protocol shows good functional group tolerance as well as high efficiency. In addition, this protocol can be easily scaled up with good efficiency. Notably, heterocycle-containing substrates, including pyridine, thiophene, and benzothiazole, gave the desired products in good yields. A plausible reaction mechanism is proposed. Conclusion: This research not only provides a green and efficient method for the synthesis of sulfinic esters but also shows new applications of electrochemistry in organic synthesis. It is considered that this green and efficient synthetic protocol used to prepare sulfinic esters will have good applications in the future.


Author(s):  
Jie Jack Li ◽  
Chris Limberakis ◽  
Derek A. Pflum

Searching for reaction in organic synthesis has been made much easier in the current age of computer databases. However, the dilemma now is which procedure one selects among the ocean of choices. Especially for novices in the laboratory, it becomes a daunting task to decide what reaction conditions to experiment with first in order to have the best chance of success. This collection intends to serve as an "older and wiser lab-mate" one could have by compiling many of the most commonly used experimental procedures in organic synthesis. With chapters that cover such topics as functional group manipulations, oxidation, reduction, and carbon-carbon bond formation, Modern Organic Synthesis in the Laboratory will be useful for both graduate students and professors in organic chemistry and medicinal chemists in the pharmaceutical and agrochemical industries.


Sign in / Sign up

Export Citation Format

Share Document