Designing Rh(I)-Half-Sandwich Catalysts for Alkyne [2+2+2] Cycloadditions

Synlett ◽  
2020 ◽  
Author(s):  
Laura Orian ◽  
F. Matthias Bickelhaupt

AbstractMetal-mediated [2+2+2] cycloadditions of unsaturated molecules to cyclic and polycyclic organic compounds are a versatile synthetic route affording good yields and selectivity under mild conditions. In the last two decades, in silico investigations have unveiled important details about the mechanism and the energetics of the whole catalytic cycle. Particularly, a number of computational studies address the topic of half-sandwich catalysts which, due to their structural fluxionality, have been widely employed, since the 1980s. In these organometallic species, the metal is coordinated to an aromatic ring, typically the ubiquitous cyclopentadienyl anion, C5H5 –(Cp) or to the Cp moiety of a larger polycyclic aromatic ligand (Cp′). During the catalytic process, the metal continuously ‘slips’ on the ring, changing its hapticity. This phenomenon of metal slippage and its implications for the catalyst’s performance are discussed in this work, referring to the most important computational mechanistic studies reported in literature for Rh(I) half-metallocenes, with the purpose of providing hints for a rational design of this class of compounds.1 Introduction2 Mechanism of Metal-Catalyzed Acetylene [2+2+2] Cycloaddition to Benzene and the Problem of the Indenyl Effect2.1 Acetylene-Acetonitrile [2+2+2] Co-cycloaddition to 2-Methylpyridine: Evidence of the Indenyl Effect2.2 Heteroaromatic Catalysts and the Evidence of a Reverse Indenyl Effect2.3 Booth’s Mechanistic Hypothesis and the Evidence of the Indenyl Effect3 Structure–Reactivity Correlation: The Slippage-Span Model4 Conclusions and Perspectives

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yali Zhou ◽  
Xingjun Xu ◽  
Hongwei Sun ◽  
Guanyu Tao ◽  
Xiao-Yong Chang ◽  
...  

AbstractHydrofunctionalization, the direct addition of an X–H (e.g., X=O, N) bond across an alkene, is a desirable strategy to make heterocycles that are important structural components of naturally occurring molecules. Described here is the design and discovery of “donor–acceptor”-type platinum catalysts that are highly effective in both hydroalkoxylation and hydroamination of unactivated alkenes over a broad range of substrates under mild conditions. A number of alkene substitution patterns are accommodated, including tri-substituted, 1,1-disubstituted, (E)-disubstituted, (Z)-disubstituted and even mono-substituted double bonds. Detailed mechanistic investigations suggest a plausible pathway that includes an unexpected dissociation/re-association of the electron-deficient ligand to form an alkene-bound “donor–acceptor”-type intermediate. These mechanistic studies help understand the origins of the high reactivity exhibited by the catalytic system, and provide a foundation for the rational design of chiral catalysts towards asymmetric hydrofunctionalization reactions.


2020 ◽  
Author(s):  
Yali Zhou ◽  
Xingjun Xu ◽  
Hongwei Sun ◽  
Guanyu Tao ◽  
Xiaoyong Chang ◽  
...  

Abstract Hydrofunctionalization, the direct additon of an X–H (e.g., X = O, N) bond across an alkene, is a desirable strategy to make heterocycles that are important structural components of naturally occurring molecules. Described here is the design and discovery of “donor–acceptor”-type platinum catalysts that are highly effective in both hydroalkoxylation and hydroamination of unactivated alkenes over a broad range of substrates under mild conditions. A number of alkene substitution patterns were accommodated, including tri-substituted, 1,1-disubstituted, (E)-disubstituted, (Z)-disubstituted and even mono-substituted double bonds. Detailed mechanistic investigations suggest a plausible pathway that includes an unexpected dissociation/re-association of the electron-deficient ligand to form an alkene-bound “donor–acceptor”-type intermediate. These mechanistic studies help understand the origins of the high reactivity exhibited by the catalytic system, and provide a foundation for the rational design of chiral catalysts towards asymmetric hydrofunctionalization reactions.


2020 ◽  
Vol 24 (18) ◽  
pp. 2106-2117
Author(s):  
Hanliang Zheng ◽  
Xiao-Song Xue

Hypervalent iodine-promoted dearomatization of phenols has received intense attention. This mini-review summarizes recent computational mechanistic studies of phenolic dearomatizations promoted by hypervalent iodine(III) reagents or catalysts. The first part of this review describes mechanisms of racemic dearomatization of phenols, paying special attention to the associative and dissociative pathways. The second part focuses on mechanisms and selectivities of diastereo- or enantio-selective dearomatization of phenols.


Synlett ◽  
2021 ◽  
Author(s):  
Xianqing Wu ◽  
Mohini Shrestha ◽  
Yifeng Chen

AbstractChiral-auxiliary-mediated synthesis represents the most frequently used synthetic tool for the induction of chirality on α-position of γ-lactams in organic synthesis. However, the general strategy requires the stoichiometric use of chiral reagents with multiple manipulation steps. Transition-metal-catalyzed asymmetric alkene dicarbofunctionalization using readily available substrates under mild conditions allows the simultaneous construction of two vicinal chemical bonds and a chiral carbon center, hence, gain expedient access to chiral heterocycles. Herein, we disclose a Ni-catalyzed enantioselective reaction of 3-butenyl carbamoyl chloride and primary alkyl iodide enabled by a newly designed chiral 8-quinoline imidazoline ligand (8-Quinim). This protocol features broad functional group tolerance and high enantioselectivities, achieving unprecedented synthesis of chiral nonaromatic heterocycles via catalytic reductive protocol.1 Introduction2 Development of 8-Quinim Ligand3 Nickel/8-Quinim-Catalyzed Enantioselective Synthesis of Chiral α-Alkylated γ-Lactam4 Conclusion and Outlook


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3223
Author(s):  
Ji-Wei Zhang ◽  
Shao-Hua Xiang ◽  
Shaoyu Li ◽  
Bin Tan

NOBIN and BINAM derivatives harboring biaryl frameworks are recognized as a class of important atropisomers with versatile applications. Here, we present an efficient synthetic route to access such compounds through copper-catalyzed domino arylation of N-arylhydroxylamines or N-arylhydrazines with diaryliodonium salts and [3,3]-sigmatropic rearrangement. This reaction features mild conditions, good substrate compatibility, and excellent efficiency. The practicality of this protocol was further extended by the synthesis of biaryl amino alcohols.


Science ◽  
2018 ◽  
Vol 362 (6416) ◽  
pp. 799-804 ◽  
Author(s):  
Michael C. Hilton ◽  
Xuan Zhang ◽  
Benjamin T. Boyle ◽  
Juan V. Alegre-Requena ◽  
Robert S. Paton ◽  
...  

Heterobiaryls composed of pyridine and diazine rings are key components of pharmaceuticals and are often central to pharmacological function. We present an alternative approach to metal-catalyzed cross-coupling to make heterobiaryls using contractive phosphorus C–C couplings, also termed phosphorus ligand coupling reactions. The process starts by regioselective phosphorus substitution of the C–H bonds para to nitrogen in two successive heterocycles; ligand coupling is then triggered via acidic alcohol solutions to form the heterobiaryl bond. Mechanistic studies imply that ligand coupling is an asynchronous process involving migration of one heterocycle to the ipso position of the other around a central pentacoordinate P(V) atom. The strategy can be applied to complex drug-like molecules containing multiple reactive sites and polar functional groups, and also enables convergent coupling of drug fragments and late-stage heteroarylation of pharmaceuticals.


Sign in / Sign up

Export Citation Format

Share Document