Ga-68 labeling of stable neurotensin(8-13) analogs via carbamoylated arginine residues gives NTS 1 R PET ligands with promising in vitro profile

2020 ◽  
Author(s):  
L Schindler ◽  
J Moosbauer ◽  
G Bernhardt ◽  
D Hellwig ◽  
M Keller
Keyword(s):  
2002 ◽  
Vol 364 (3) ◽  
pp. 711-717 ◽  
Author(s):  
Barry K. DERHAM ◽  
John J. HARDING

The role of α-crystallin, a small heat-shock protein and chaperone, may explain how the lens stays transparent for so long. α-Crystallin prevents the aggregation of other lens crystallins and proteins that have become unfolded by ‘trapping’ the protein in a high-molecular-mass complex. However, during aging, the chaperone function of α-crystallin becomes compromised, allowing the formation of light-scattering aggregates that can proceed to form cataracts. Within the central part of the lens there is no turnover of damaged protein, and therefore post-translational modifications of α-crystallin accumulate that can reduce chaperone function; this is compounded in cataract lenses. Extensive in vitro glycation, carbamylation and oxidation all decrease chaperone ability. In the present study, we report the effect of the modifiers malondialdehyde, acetaldehyde and methylglyoxal, all of which are pertinent to cataract. Also modification by aspirin, which is known to delay cataract and other diseases, has been investigated. Recently, two point mutations of arginine residues were shown to cause congenital cataract. 1,2-Cyclohexanedione modifies arginine residues, and the extent of modification needed for a change in chaperone function was investigated. Only methylglyoxal and extensive modification by 1,2-cyclohexanedione caused a decrease in chaperone function. This highlights the robust nature of α-crystallin.


2007 ◽  
Vol 75 (6) ◽  
pp. 2946-2953 ◽  
Author(s):  
Zoë E. V. Worthington ◽  
Nicholas H. Carbonetti

ABSTRACT Pertussis toxin (PT) is an important virulence factor produced by Bordetella pertussis. PT holotoxin comprises one enzymatically active A subunit (S1), associated with a pentamer of B subunits. PT is an ADP-ribosyltransferase that modifies several mammalian heterotrimeric G proteins. Some bacterial toxins are believed to undergo retrograde intracellular transport through the Golgi apparatus to the endoplasmic reticulum (ER). The ER-associated degradation (ERAD) pathway involves the removal of misfolded proteins from the ER and degradation upon their return to the cytosol; this pathway may be exploited by PT and other toxins. In the cytosol, ERAD substrates are ubiquitinated at lysine residues, targeting them to the proteasome for degradation. We hypothesize that S1 avoids ubiquitination and proteasome degradation due to its lack of lysine residues. We predicted that the addition of lysine residues would reduce PT toxicity by allowing ubiquitination and degradation to occur. Variant forms of PT were engineered, replacing one, two, or three arginines with lysines in a variety of locations on S1. Several variants were identified with wild-type in vitro enzymatic activity but reduced cellular activity, consistent with our hypothesis. Significant recovery of the cellular activity of these variants was observed when CHO cells were pretreated with a proteasome inhibitor. We concluded that the replacement of arginine residues with lysine in the S1 subunit of PT renders the toxin subject to proteasomal degradation, suggesting that wild-type PT avoids proteasome degradation due to an absence of lysine residues.


1996 ◽  
Vol 16 (7) ◽  
pp. 3668-3678 ◽  
Author(s):  
M F Henry ◽  
P A Silver

RNA-binding proteins play many essential roles in the metabolism of nuclear pre-mRNA. As such, they demonstrate a myriad of dynamic behaviors and modifications. In particular, heterogeneous nuclear ribonucleoproteins (hnRNPs) contain the bulk of methylated arginine residues in eukaryotic cells. We have identified the first eukaryotic hnRNP-specific methyltransferase via a genetic screen for proteins that interact with an abundant poly(A)+-RNA-binding protein termed Npl3p. We have previously shown that npl3-1 mutants are temperature sensitive for growth and defective for export of mRNA from the nucleus. New mutants in interacting genes were isolated by their failure to survive in the presence of the npl3-1 allele. Four alleles of the same gene were identified in this manner. Cloning of the cognate gene revealed an encoded protein with similarity to methyltransferases that was termed HMT1 for hnRNP methyltransferase. HMT1 is not required for normal cell viability except when NPL3 is also defective. The Hmt1 protein is located in the nucleus. We demonstrate that Npl3p is methylated by Hmt1p both in vivo and in vitro. These findings now allow further exploration of the function of this previously uncharacterized class of enzymes.


2018 ◽  
Vol 475 (16) ◽  
pp. 2653-2666 ◽  
Author(s):  
Krishna Ghosh ◽  
Biji Chatterjee ◽  
Santosh R. Kanade

The studies on lead (Pb) exposure linking to epigenetic modulations are caused by its differential actions on global DNA methylation and histone modifications. These epigenetic changes may result in increased accessibility of the transcription factors to promoter DNA-binding elements leading to activation and expression of the gene. The protein arginine methyltransferase 5 (PRMT5) and its partner methylosome protein 50 (MEP50) together catalyze the mono- and symmetric dimethylation of arginine residues in many histone and non-histone protein substrates. Moreover, it is overexpressed in many forms of cancer. In the present study, the effects of Pb on the PRMT5 and MEP50 expression and formation of the symmetrically dimethylated arginine (SDMA), the catalytic product of the PRMT5–MEP50 complex were analyzed in vitro after exposing the A549 and MCF-7 cells. The results show that exposure to 0.1 and 1 µM of Pb strongly enhanced the expression of both PRMT5 and MEP50 transcript and protein leading to increased SDMA levels globally with H4R3 being increasingly symmetrically dimethylated in a dose-dependent manner after 48 h of Pb exposure in both cell types. The methylation-specific PCR also revealed that the CpG island present on the PRMT5 promoter proximal region was increasingly demethylated as the dose of Pb increased in a 48-h exposure window in both cells, with MCF-7 being more responsive to Pb-mediated PRMT5 promoter demethylation. The bisulfite sequencing confirmed this effect. The findings therefore indicate that Pb exposure increasing the PRMT5 expression might be one of the contributing epigenetic factors in the lead-mediated disease processes as PRMT5 has a versatile role in cellular functions and oncogenesis.


2020 ◽  
Vol 117 (21) ◽  
pp. 11421-11431 ◽  
Author(s):  
Benjamin S. Schuster ◽  
Gregory L. Dignon ◽  
Wai Shing Tang ◽  
Fleurie M. Kelley ◽  
Aishwarya Kanchi Ranganath ◽  
...  

Phase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bioinspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules. Based on a predictive coarse-grained IDP model, we identified a region of the RGG domain that has high contact probability and is highly conserved between species; deletion of this region significantly disrupts phase separation in vitro and in vivo. We determined the effects of charge patterning on phase behavior through sequence shuffling. We designed sequences with significantly increased phase separation propensity by shuffling the wild-type sequence, which contains well-mixed charged residues, to increase charge segregation. This result indicates the natural sequence is under negative selection to moderate this mode of interaction. We measured the contributions of tyrosine and arginine residues to phase separation experimentally through mutagenesis studies and computationally through direct interrogation of different modes of interaction using all-atom simulations. Finally, we show that despite these sequence perturbations, the RGG-derived condensates remain liquid-like. Together, these studies advance our fundamental understanding of key biophysical principles and sequence features important to phase separation.


2004 ◽  
Vol 78 (23) ◽  
pp. 13325-13334 ◽  
Author(s):  
Yi-Jia Li ◽  
Michael R. Stallcup ◽  
Michael M. C. Lai

ABSTRACT Hepatitis delta virus (HDV) contains a circular RNA which encodes a single protein, hepatitis delta antigen (HDAg). HDAg exists in two forms, a small form (S-HDAg) and a large form (L-HDAg). S-HDAg can transactivate HDV RNA replication. Recent studies have shown that posttranslational modifications, such as phosphorylation and acetylation, of S-HDAg can modulate HDV RNA replication. Here we show that S-HDAg can be methylated by protein arginine methyltransferase (PRMT1) in vitro and in vivo. The major methylation site is at arginine-13 (R13), which is in the RGGR motif of an RNA-binding domain. The methylation of S-HDAg is essential for HDV RNA replication, especially for replication of the antigenomic RNA strand to form the genomic RNA strand. An R13A mutation in S-HDAg inhibited HDV RNA replication. The presence of a methylation inhibitor, S-adenosyl-homocysteine, also inhibited HDV RNA replication. We further found that the methylation of S-HDAg affected its subcellular localization. Methylation-defective HDAg lost the ability to form a speckled structure in the nucleus and also permeated into the cytoplasm. These results thus revealed a novel posttranslational modification of HDAg and indicated its importance for HDV RNA replication. This and other results further showed that, unlike replication of the HDV genomic RNA strand, replication of the antigenomic RNA strand requires multiple types of posttranslational modification, including the phosphorylation and methylation of HDAg.


2000 ◽  
Vol 28 (4) ◽  
pp. 415-418 ◽  
Author(s):  
M. R. Stallcup ◽  
D. Chen ◽  
S. S. Koh ◽  
H. Ma ◽  
Y.-H. Lee ◽  
...  

Nuclear hormone receptors (NRs) activate transcription by binding to specific enhancer elements associated with target genes. Transcriptional activation is accomplished with the help of complexes of co-activator proteins that bind to NRs. p160 co-activators, a family of three related 160 kDa proteins, serve as primary co-activators by binding directly to NRs and recruiting additional secondary co-activators. Some of these (CBP/p300 and p/CAF) can acetylate histones and other proteins in the transcription complex, thus helping to modify chromatin structure and form an active transcription initiation complex. We recently discovered co-activator-associated arginine methyltransferase 1 (CARM1), which binds to p160 co-activators and thereby enhances transcriptional activation by NRs on transiently transfected reporter genes. CARM1 also methylates specific arginine residues in the N-terminal tail of histone H3 in vitro. A related arginine-specific protein methyltransferase, PRMT1, also binds p160 co-activators and enhances NR function. PRMT1 methylates histone H4 in vitro. The enhancement of NR function by CARM1, PRMT1 and p300 depends on their interactions with p160 co-activators. In the presence of p160 co-activators, some pairs of these three secondary co-activators provide a highly synergistic enhancement of NR function on transiently transfected reporter genes. We have also observed an enhancement of NR function on stably integrated reporter genes by these co-activators. We propose that the synergy of co-activator function between p300, CARM1 and PRMT1 is due to their different but complementary protein modification activities.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Mayra Rodríguez-Rodríguez ◽  
Rafael Herrera-Esparza ◽  
Juan-José Bollain y Goytia ◽  
María-Elena Pérez-Pérez ◽  
Deyanira Pacheco-Tovar ◽  
...  

The goal of the present study was to determine whether peptidylarginine deiminase PAD2 and PAD4 enzymes are present in Balb/c mouse salivary glands and whether they are able to citrullinate Ro and La ribonucleoproteins. Salivary glands from Balb/c mice were cultured in DMEM and supplemented with one of the following stimulants: ATP, LPS, TNF, IFNγ, or IL-6. A control group without stimulant was also evaluated. PAD2, PAD4, citrullinated peptides, Ro60, and La were detected by immunohistochemistry and double immunofluorescence. PAD2 and PAD4 mRNAs and protein expression were detected by qPCR and Western blot analysis. PAD activity was assessed using an antigen capture enzyme-linked immunosorbent assay. LPS, ATP, and TNF triggered PAD2 and PAD4 expression; in contrast, no expression was detected in the control group (p<0.001). PAD transcription slightly increased in response to stimulation. Additionally, PAD2/4 activity modified the arginine residues of a reporter protein (fibrinogen) in vitro. PADs citrullinated Ro60 and La ribonucleoproteins in vivo. Molecular stimulants induced apoptosis in ductal cells and the externalization of Ro60 and La ribonucleoproteins onto apoptotic membranes. PAD enzymes citrullinate Ro and La ribonucleoproteins, and this experimental approach may facilitate our understanding of the role of posttranslational modifications in the pathophysiology of Sjögren’s syndrome.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1309-1309
Author(s):  
Shinsuke Mizutani ◽  
Masafumi Taniwaki ◽  
Tsukasa Okuda

Abstract Abstract 1309 Acute Myeloid Leukemia 1 (AML1; also called as Runx1: Runt-related transcription factor 1) belongs to the Class II group of leukemia-associated mutation-target genes, and it encodes the DNA-binding subunit of the hetero-dimeric transcription factor complex, Core-Binding Factor (CBF). CBF plays pivotal roles in initial hematopoietic development during embryogenesis and in cellular differentiation of thrombotic and lymphatic lineages throughout adult life. Recent researches revealed that cellular AML1 polypeptide is processed with post-translational modifications, including phosphorylation, acethylation, ubiquitination, and methylation. Biological significance of these modifications on the AML1's function as the hematopoietic regulator, however, largely remains to be elucidated. In this study, we focused on the arginine-methylation as an initial step towards the comprehensive understanding for the AML1-regulating mechanism through these modifications. Arginine residues just downstream to the Runt-domain, which is located at N-terminal region of the molecule and functions as the binding site to DNA and CBF beta: the hetero-dimerization partner, are recently reported to be methylated, resulting in the inhibition of the corepressor-binding thus enhancing its trans- activating activity. In order to elucidate biological significance of these methylations, we performed a series of genetic experiments: First, we generated the non-methylatable double arginine-to-lysine (RRKK) mutant of AML1 at these residues, which should keep AML1-corepressor-binding. When this mutant was subjected to the luciferase reporter-assay using a target-gene construct, it showed lower trans- activating activity in comparison to that for wild-type molecule, as expected. However, this loss-of-function mutation appeared to be dispensable at least for in vitro function for hematopoietic regulation in that this RRKK mutant did rescue hematopoietic differentiation of the AML1-deficient murine ES cells in culture when expressed from a knock-in allele as was the case for the wild-type cDNA of mouse AML1. To further evaluate the biological activity of this mutant in the context of an entire animal, we introduced this mutant cDNA into AML1/Runx1 locus of mouse ES cells by means of a targeted-insertion (knock-in) strategy. Germline mutant mouse lines were successfully established, following blastocyst-injection of these ES cell clones. Heterozygous mice were healthy and fertile, and genotyping for the live pups generated from heterozygotes-crossing revealed that this arginine-mutant allele segregated according to the Mendelian ratio. Homozygous AML1RRKK/RRKK mice were born alive and grew up adult, circumventing the mid-embryonic death due to hematopoietic block that was originally described for the AML1-deficient mice, thus the in vitro notion that these arginine-methylations were not essential for the early hematopoietic development described above was further underscored. There were no significant differences so far observed in peripheral blood cell counts among mice of the AML1RRKK/RRKK or AML1WT/WT genotypes, in comparison to their wild-type littermates. Preliminary studies revealed that AML1RRKK/RRKK mice showed imbalance of the peripheral T cell populations, implying that these methylations may have roles in these cellular lineages. We are currently focusing on further examination of these mutant mice, paying special attention to the cellular lineages where genetic manifestations were observed for AML1 haploinsufficient mice and/or conditional AML1-deficient mice. We hope that these efforts will unveil the biological significance of the AML1 methylation in hematopoietic regulation. Disclosures: No relevant conflicts of interest to declare.


Biochemistry ◽  
1990 ◽  
Vol 29 (5) ◽  
pp. 1107-1111 ◽  
Author(s):  
Hyo Joon Kim ◽  
Satoshi Nishikawa ◽  
Yuiko Tokutomi ◽  
Hitoshi Takenaka ◽  
Minoru Hamada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document