scholarly journals Genetic Diversity of Human Immunodeficiency Virus Type 1 in Asymptomatic Blood Donors in Islamabad, Pakistan

2020 ◽  
Vol 12 (02) ◽  
pp. 092-097
Author(s):  
Usman Waheed ◽  
Farooq Ahmed Noor ◽  
Noore Saba ◽  
Akhlaaq Wazeer ◽  
Zahida Qasim ◽  
...  

Abstract Objective The serological testing of human immunodeficiency virus (HIV) is mandatory under the blood safety legislation of Pakistan; hence, data exist on the prevalence of HIV in blood donors. However, little is known about the molecular epidemiology of HIV in the blood donor population. Therefore, the current study was designed to study the genetic diversity of HIV-1 infection in a population of apparently healthy treatment-naive blood donors in Islamabad, Pakistan. Material and Methods A total of 85,736 blood donors were tested for HIV by the chemiluminescence immunoassay. All positive donor samples were analyzed for the presence of various HIV genotypes (types and subtypes). Viral ribonucleic acid was extracted from blood samples of HIV positive donors and reverse transcribed into complementary deoxyribonucleic acid (cDNA). The cDNA of all positive donors was then analyzed for the presence of various HIV genotypes (types and subtypes) by employing subtype-specific primers in a nested polymerase chain reaction. The amplified products were run on ethidium bromide-stained 2% agarose gel and visualized using a ultraviolet transilluminator. A particular subtype was assigned to a sample if the subtype-specific reaction made a band 20% highly intense compared with the band made by the subtype-independent reaction. Results A total of 85,736 blood donors were screened for the presence of antibodies to HIV. Out of them, 114 were initially found reactive for HIV. The repeat testing resulted in 112 (0.13%) positive donors, 95% confidence interval 0.0014 (0.0011–0.0018). These 112 samples were analyzed for molecular typing of HIV-1. The predominant HIV-1 subtype was A (n = 101) (90.1%) followed by subtype B (n = 11) (9.9%). Conclusion These findings are key to understand the diversified HIV epidemic at the molecular level and should assist public health workers in implementing measures to lessen the further dissemination of these viruses in the country.

1989 ◽  
Vol 170 (5) ◽  
pp. 1681-1695 ◽  
Author(s):  
I Berkower ◽  
G E Smith ◽  
C Giri ◽  
D Murphy

HIV-1 is known to show a high degree of genetic diversity, which may have major implications for disease pathogenesis and prevention. If every divergent isolate represented a distinct serotype, then effective vaccination might be impossible. However, using a sensitive new plaque-forming assay for HIV-1, we have found that most infected patients make neutralizing antibodies, predominantly to a group-specific epitope shared among three highly divergent isolates. This epitope persists among divergent isolates and rarely mutates, despite the rapid overall mutation rate of HIV-1, suggesting that it may participate in an essential viral function. These findings, plus the rarity of reinfections among these patients, suggest that HIV-1 may be more susceptible to a vaccine strategy based on a group-specific neutralizing epitope than was previously suspected.


1999 ◽  
Vol 37 (1) ◽  
pp. 110-116 ◽  
Author(s):  
K. Triques ◽  
J. Coste ◽  
J. L. Perret ◽  
C. Segarra ◽  
E. Mpoudi ◽  
...  

Three versions of a commercial human immunodeficiency virus (HIV) type 1 (HIV-1) load test (the AMPLICOR HIV-1 MONITOR Test versions 1.0, 1.0+, and 1.5; Roche Diagnostics, Branchburg, N.J.) were evaluated for their ability to detect and quantify HIV-1 RNA of different genetic subtypes. Plasma samples from 96 patients infected with various subtypes of HIV-1 (55 patients infected with subtype A, 9 with subtype B, 21 with subtype C, 2 with subtype D, 7 with subtype E, and 2 with subtype G) and cultured virus from 29 HIV-1 reference strains (3 of subtype A, 6 of subtype B, 5 of subtype C, 3 of subtype D, 8 of subtype E, 3 of subtype F, and 1 of subtype G) were tested. Detection of subtypes A and E was significantly improved with versions 1.0+ and 1.5 compared to that with version 1.0, whereas detection of subtypes B, C, D, and G was equivalent with the three versions. Versions 1.0, 1.0+, and 1.5 detected 65, 98, and 100% of the subtype A-infected samples from patients, respectively, and 71, 100, and 100% of the subtype E-infected samples from patients, respectively. Version 1.5 yielded a significant increase in viral load for samples infected with subtypes A and E (greater than 1 log10 HIV RNA copies/ml). For samples infected with subtype B, C, and D and tested with version 1.5, only a slight increase in viral load was observed (<0.5 log10). We also evaluated a prototype automated version of the test that uses the same PCR primers as version 1.5. The results with the prototype automated test were highly correlated with those of the version 1.5 test for all subtypes, but were lower overall. The AMPLICOR HIV-1 MONITOR Test, version 1.5, yielded accurate measurement of the HIV load for all HIV-1 subtypes tested, which should allow the test to be used to assess disease prognosis and response to antiretroviral treatment in patients infected with a group M HIV-1 subtype.


1998 ◽  
Vol 72 (11) ◽  
pp. 9337-9344 ◽  
Author(s):  
Yi-jun Zhang ◽  
Tatjana Dragic ◽  
Yunzhen Cao ◽  
Leondios Kostrikis ◽  
Douglas S. Kwon ◽  
...  

ABSTRACT We have tested a panel of pediatric and adult human immunodeficiency virus type 1 (HIV-1) primary isolates for the ability to employ the following proteins as coreceptors during viral entry: CCR1, CCR2b, CCR3, CCR4, CCR5, CCR8, CXCR4, Bonzo, BOB, GPR1, V28, US28, and APJ. Most non-syncytium-inducing isolates could utilize only CCR5. All syncytium-inducing viruses used CXCR4, some also employed V28, and one (DH123) used CCR8 and APJ as well. A longitudinal series of HIV-1 subtype B isolates from an infected infant and its mother utilized Bonzo efficiently, as well as CCR5. The maternal isolates, which were syncytium inducing, also used CXCR4, CCR8, V28, and APJ.


2007 ◽  
Vol 82 (2) ◽  
pp. 638-651 ◽  
Author(s):  
Yun Li ◽  
Bradley Cleveland ◽  
Igor Klots ◽  
Bruce Travis ◽  
Barbra A. Richardson ◽  
...  

ABSTRACT Glycans on human immunodeficiency virus (HIV) envelope protein play an important role in infection and evasion from host immune responses. To examine the role of specific glycans, we introduced single or multiple mutations into potential N-linked glycosylation sites in hypervariable regions (V1 to V3) of the env gene of HIV type 1 (HIV-1) 89.6. Three mutants tested showed enhanced sensitivity to soluble CD4. Mutant N7 (N197Q) in the carboxy-terminal stem of the V2 loop showed the most pronounced increase in sensitivity to broadly neutralizing antibodies (NtAbs), including those targeting the CD4-binding site (IgG1b12) and the V3 loop (447-52D). This mutant is also sensitive to CD4-induced NtAb 17b in the absence of CD4. Unlike the wild-type (WT) Env, mutant N7 mediates CD4-independent infection in U87-CXCR4 cells. To study the immunogenicity of mutant Env, we immunized pig-tailed macaques with recombinant vaccinia viruses, one expressing SIVmac239 Gag-Pol and the other expressing HIV-1 89.6 Env gp160 in WT or mutant forms. Animals were boosted 14 to 16 months later with simian immunodeficiency virus gag DNA and the cognate gp140 protein before intrarectal challenge with SHIV89.6P-MN. Day-of-challenge sera from animals immunized with mutant N7 Env had significantly higher and broader neutralizing activities than sera from WT Env-immunized animals. Neutralizing activity was observed against SHIV89.6, SHIV89.6P-MN, HIV-1 SF162, and a panel of subtype B primary isolates. Compared to control animals, immunized animals showed significant reduction of plasma viral load and increased survival after challenge, which correlated with prechallenge NtAb titers. These results indicate the potential advantages for glycan modification in vaccine design, although the role of specific glycans requires further examination.


2004 ◽  
Vol 78 (13) ◽  
pp. 7279-7283 ◽  
Author(s):  
Manish Sagar ◽  
Erin Kirkegaard ◽  
E. Michelle Long ◽  
Connie Celum ◽  
Susan Buchbinder ◽  
...  

ABSTRACT African women frequently acquire several genetically distinct human immunodeficiency virus type 1 (HIV-1) variants from a heterosexual partner, whereas the acquisition of multiple variants appears to be rare in men. To determine whether newly infected individuals in other risk groups acquire genetically diverse viruses, we examined the viral envelope sequences in plasma samples from 13 women and 4 men from the United States infected with subtype B viruses and 10 men from Kenya infected with non-subtype B viruses. HIV-1 envelope sequences differed by more than 2% in three U.S. women, one U.S. man, and one Kenyan man near the time of seroconversion. These findings suggest that early HIV-1 genetic diversity is not exclusive to women from Africa or to infection with any particular HIV-1 subtype.


2003 ◽  
Vol 187 (11) ◽  
pp. 1826-1828 ◽  
Author(s):  
Elisabetta Riva ◽  
Guido Antonelli ◽  
Carolina Scagnolari ◽  
Mauro Pistello ◽  
Maria Rosaria Capobianchi ◽  
...  

2009 ◽  
Vol 83 (19) ◽  
pp. 10269-10274 ◽  
Author(s):  
Anne Piantadosi ◽  
Dana Panteleeff ◽  
Catherine A. Blish ◽  
Jared M. Baeten ◽  
Walter Jaoko ◽  
...  

ABSTRACT The determinants of a broad neutralizing antibody (NAb) response and its effect on human immunodeficiency virus type 1 (HIV-1) disease progression are not well defined, partly because most prior studies of a broad NAb response were cross-sectional. We examined correlates of NAb response breadth among 70 HIV-infected, antiretroviral-naïve Kenyan women from a longitudinal seroincident cohort. NAb response breadth was measured 5 years after infection against five subtype A viruses and one subtype B virus. Greater NAb response breadth was associated with a higher viral load set point and greater HIV-1 env diversity early in infection. However, greater NAb response breadth was not associated with a delayed time to a CD4+ T-cell count of <200, antiretroviral therapy, or death. Thus, a broad NAb response results from a high level of antigenic stimulation early in infection, which likely accounts for prior observations that greater NAb response breadth is associated with a higher viral load later in infection.


Sign in / Sign up

Export Citation Format

Share Document