scholarly journals Human Immunodeficiency Virus Type 1 (HIV-1) Diversity at Time of Infection Is Not Restricted to Certain Risk Groups or Specific HIV-1 Subtypes

2004 ◽  
Vol 78 (13) ◽  
pp. 7279-7283 ◽  
Author(s):  
Manish Sagar ◽  
Erin Kirkegaard ◽  
E. Michelle Long ◽  
Connie Celum ◽  
Susan Buchbinder ◽  
...  

ABSTRACT African women frequently acquire several genetically distinct human immunodeficiency virus type 1 (HIV-1) variants from a heterosexual partner, whereas the acquisition of multiple variants appears to be rare in men. To determine whether newly infected individuals in other risk groups acquire genetically diverse viruses, we examined the viral envelope sequences in plasma samples from 13 women and 4 men from the United States infected with subtype B viruses and 10 men from Kenya infected with non-subtype B viruses. HIV-1 envelope sequences differed by more than 2% in three U.S. women, one U.S. man, and one Kenyan man near the time of seroconversion. These findings suggest that early HIV-1 genetic diversity is not exclusive to women from Africa or to infection with any particular HIV-1 subtype.

2002 ◽  
Vol 76 (15) ◽  
pp. 7812-7821 ◽  
Author(s):  
Rogier W. Sanders ◽  
Esther C. de Jong ◽  
Christopher E. Baldwin ◽  
Joost H. N. Schuitemaker ◽  
Martien L. Kapsenberg ◽  
...  

ABSTRACT Dendritic cells (DC) support human immunodeficiency virus type 1 (HIV-1) transmission by capture of the virus particle in the mucosa and subsequent transport to the draining lymph node, where HIV-1 is presented to CD4+ Th cells. Virus transmission involves a high-affinity interaction between the DC-specific surface molecule DC-SIGN and the viral envelope glycoprotein gp120 and subsequent internalization of the virus, which remains infectious. The mechanism of viral transmission from DC to T cells is currently unknown. Sentinel immature DC (iDC) develop into Th1-promoting effector DC1 or Th2-promoting DC2, depending on the activation signals. We studied the ability of these effector DC subsets to support HIV-1 transmission in vitro. Compared with iDC, virus transmission is greatly upregulated for the DC1 subset, whereas DC2 cells are inactive. Increased transmission by DC1 correlates with increased expression of ICAM-1, and blocking studies confirm that ICAM-1 expression on DC is important for HIV transmission. The ICAM-1-LFA-1 interaction is known to be important for immunological cross talk between DC and T cells, and our results indicate that this cell-cell contact is exploited by HIV-1 for efficient transmission.


1998 ◽  
Vol 72 (11) ◽  
pp. 9337-9344 ◽  
Author(s):  
Yi-jun Zhang ◽  
Tatjana Dragic ◽  
Yunzhen Cao ◽  
Leondios Kostrikis ◽  
Douglas S. Kwon ◽  
...  

ABSTRACT We have tested a panel of pediatric and adult human immunodeficiency virus type 1 (HIV-1) primary isolates for the ability to employ the following proteins as coreceptors during viral entry: CCR1, CCR2b, CCR3, CCR4, CCR5, CCR8, CXCR4, Bonzo, BOB, GPR1, V28, US28, and APJ. Most non-syncytium-inducing isolates could utilize only CCR5. All syncytium-inducing viruses used CXCR4, some also employed V28, and one (DH123) used CCR8 and APJ as well. A longitudinal series of HIV-1 subtype B isolates from an infected infant and its mother utilized Bonzo efficiently, as well as CCR5. The maternal isolates, which were syncytium inducing, also used CXCR4, CCR8, V28, and APJ.


2000 ◽  
Vol 74 (9) ◽  
pp. 4414-4419 ◽  
Author(s):  
Rainer Ziermann ◽  
Kay Limoli ◽  
Kalyan Das ◽  
Edward Arnold ◽  
Christos J. Petropoulos ◽  
...  

ABSTRACT Amprenavir (Agenerase, 141-W94, VX-478) is a human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PRI) recently approved for the treatment of HIV-1 infection in the United States. A major cause of treatment failure is the development of resistance to PRIs. One potential use for amprenavir is as salvage therapy for patients for whom treatment that includes one (or more) of the other four currently approved PRIs—saquinavir, indinavir, ritonavir, and nelfinavir—has failed. We evaluated the cross-resistance to amprenavir of viruses that evolved during treatment with the two most commonly prescribed PRIs, nelfinavir and indinavir. Unexpectedly, a dramatic increase in susceptibility (2.5- to 12.5-fold) was observed with 20 of 312 (6.4%) patient viruses analyzed. The most pronounced increases in susceptibility were strongly associated with an N88S mutation in protease. All viruses that carried the N88S mutation were hypersensitive to amprenavir. Site-directed mutagenesis studies confirmed the causal role of N88S in determining amprenavir hypersensitivity. The presence of the N88S mutation and associated amprenavir hypersensitivity may be useful in predicting an improved clinical response to amprenavir salvage therapy.


2008 ◽  
Vol 82 (14) ◽  
pp. 7022-7033 ◽  
Author(s):  
Terrence M. Dobrowsky ◽  
Yan Zhou ◽  
Sean X. Sun ◽  
Robert F. Siliciano ◽  
Denis Wirtz

ABSTRACT The fusion of human immunodeficiency virus type 1 (HIV-1) to host cells is a dynamic process governed by the interaction between glycoproteins on the viral envelope and the major receptor, CD4, and coreceptor on the surface of the cell. How these receptors organize at the virion-cell interface to promote a fusion-competent site is not well understood. Using single-molecule force spectroscopy, we map the tensile strengths, lifetimes, and energy barriers of individual intermolecular bonds between CCR5-tropic HIV-1 gp120 and its receptors CD4 and CCR5 or CXCR4 as a function of the interaction time with the cell. According to the Bell model, at short times of contact between cell and virion, the gp120-CD4 bond is able to withstand forces up to 35 pN and has an initial lifetime of 0.27 s and an intermolecular length of interaction of 0.34 nm. The initial bond also has an energy barrier of 6.7 kB T (where kB is Boltzmann's constant and T is absolute temperature). However, within 0.3 s, individual gp120-CD4 bonds undergo rapid destabilization accompanied by a shortened lifetime and a lowered tensile strength. This destabilization is significantly enhanced by the coreceptor CCR5, not by CXCR4 or fusion inhibitors, which suggests that it is directly related to a conformational change in the gp120-CD4 bond. These measurements highlight the instability and low tensile strength of gp120-receptor bonds, uncover a synergistic role for CCR5 in the progression of the gp120-CD4 bond, and suggest that the cell-virus adhesion complex is functionally arranged about a long-lived gp120-coreceptor bond.


2008 ◽  
Vol 82 (23) ◽  
pp. 11695-11704 ◽  
Author(s):  
Jessamina E. Harrison ◽  
Jonathan B. Lynch ◽  
Luz-Jeannette Sierra ◽  
Leslie A. Blackburn ◽  
Neelanjana Ray ◽  
...  

ABSTRACT We screened a panel of R5X4 and X4 human immunodeficiency virus type 1 (HIV-1) strains for their sensitivities to AMD3100, a small-molecule CXCR4 antagonist that blocks HIV-1 infection via this coreceptor. While no longer under clinical development, AMD3100 is a useful tool with which to probe interactions between the viral envelope (Env) protein and CXCR4 and to identify pathways by which HIV-1 may become resistant to this class of antiviral agents. While infection by most virus strains was completely blocked by AMD3100, we identified several R5X4 and X4 isolates that exhibited plateau effects: as the AMD3100 concentration was increased, virus infection and membrane fusion diminished to variable degrees. Once saturating concentrations of AMD3100 were achieved, further inhibition was not observed, indicating a noncompetitive mode of viral resistance to the drug. The magnitude of the plateau varied depending on the virus isolate, as well as the cell type used, with considerable variation observed when primary human T cells from different human donors were used. Structure-function studies indicated that the V1/V2 region of the R5X4 HIV-1 isolate DH12 was necessary for AMD3100 resistance and could confer this property on two heterologous Env proteins. We conclude that some R5X4 and X4 HIV-1 isolates can utilize the AMD3100-bound conformation of CXCR4, with the efficiency being influenced by both viral and host factors. Baseline resistance to this CXCR4 antagonist could influence the clinical use of such compounds.


2004 ◽  
Vol 78 (5) ◽  
pp. 2586-2590 ◽  
Author(s):  
Udaykumar Ranga ◽  
Raj Shankarappa ◽  
Nagadenahalli B. Siddappa ◽  
Lakshmi Ramakrishna ◽  
Ramalingam Nagendran ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) is correlated with increased monocyte migration to the brain, and the incidence of HAD among otherwise asymptomatic subjects appears to be lower in India than in the United States and Europe (1 to 2% versus 15 to 30%). Because of the genetic differences between HIV-1 strains circulating in these regions, we sought to identify viral determinants associated with this difference. We targeted Tat protein for these studies in view of its association with monocyte chemotactic function. Analyses of Tat sequences representing nine subtypes revealed that at least six amino acid residues are differentially conserved in subtype C Tat (C-Tat). Of these, cysteine (at position 31) was highly (>99%) conserved in non-subtype C viruses and more than 90% of subtype C viruses encoded a serine. We hypothesized a compromised chemotactic function of C-Tat due to the disruption of CC motif and tested it with the wild type C-Tat (CS) and its two isogenic variants (CC and SC) derived by site-directed mutagenesis. We found that the CS natural variant was defective for monocyte chemotactic activity without a loss in the transactivation property. While the CC mutant is functionally competent for both the functions, in contrast, the SC mutant was defective in both. Therefore, the loss of the C-Tat chemotactic property may underlie the reduced incidence of HAD; although not presenting conclusive evidence, this study provides the first evidence for a potential epidemiologic phenomenon associated with biological differences in the subtype C viruses.


2009 ◽  
Vol 83 (19) ◽  
pp. 10269-10274 ◽  
Author(s):  
Anne Piantadosi ◽  
Dana Panteleeff ◽  
Catherine A. Blish ◽  
Jared M. Baeten ◽  
Walter Jaoko ◽  
...  

ABSTRACT The determinants of a broad neutralizing antibody (NAb) response and its effect on human immunodeficiency virus type 1 (HIV-1) disease progression are not well defined, partly because most prior studies of a broad NAb response were cross-sectional. We examined correlates of NAb response breadth among 70 HIV-infected, antiretroviral-naïve Kenyan women from a longitudinal seroincident cohort. NAb response breadth was measured 5 years after infection against five subtype A viruses and one subtype B virus. Greater NAb response breadth was associated with a higher viral load set point and greater HIV-1 env diversity early in infection. However, greater NAb response breadth was not associated with a delayed time to a CD4+ T-cell count of <200, antiretroviral therapy, or death. Thus, a broad NAb response results from a high level of antigenic stimulation early in infection, which likely accounts for prior observations that greater NAb response breadth is associated with a higher viral load later in infection.


2007 ◽  
Vol 88 (11) ◽  
pp. 3139-3144 ◽  
Author(s):  
Yoshinao Kubo ◽  
Masaru Yokoyama ◽  
Hiroaki Yoshii ◽  
Chiho Mitani ◽  
Chika Tominaga ◽  
...  

CXCR4 functions as an infection receptor of X4 human immunodeficiency virus type 1 (HIV-1) . CXCR4 is glycosylated at the N-terminal extracellular region, which is important for viral envelope (Env) protein binding. We compared the effects of CXCR4 glycan on the CD4-dependent and –independent infections in human cells by X4 viruses. We found that transduction mediated by Env proteins of CD4-independent HIV-1 strains increased up to 5.5-fold in cells expressing unglycosylated CXCR4, suggesting that the CXCR4 glycan inhibits CD4-independent X4 virus infection. Co-expression of CD4 on the target cell surface or pre-incubation of virus particles with soluble CD4 abrogates the glycan-mediated inhibition of X4 virus infection, suggesting that interaction of Env protein with CD4 counteracts the inhibition. These findings indicate that it will be advantageous for X4 HIV-1 to remain CD4-dependent. A structural model that explains the glycan-mediated inhibition is discussed.


Sign in / Sign up

Export Citation Format

Share Document