Robotic Navigated Laser Craniotomy for Depth Electrode Implantation in Epilepsy Surgery: A Cadaver Lab Study

Author(s):  
Karl Roessler ◽  
Fabian Winter ◽  
Tobias Wilken ◽  
Ekaterina Pataraia ◽  
Magdalena Mueller-Gerbl ◽  
...  

Abstract Objective Depth electrode implantation for invasive monitoring in epilepsy surgery has become a standard procedure. We describe a new frameless stereotactic intervention using robot-guided laser beam for making precise bone channels for depth electrode placement. Methods A laboratory investigation on a head cadaver specimen was performed using a CT scan planning of depth electrodes in various positions. Precise bone channels were made by a navigated robot-driven laser beam (erbium:yttrium aluminum garnet [Er:YAG], 2.94-μm wavelength,) instead of twist drill holes. Entry point and target point precision was calculated using postimplantation CT scans and comparison to the preoperative trajectory plan. Results Frontal, parietal, and occipital bone channels for bolt implantation were made. The occipital bone channel had an angulation of more than 60 degrees to the surface. Bolts and depth electrodes were implanted solely guided by the trajectory given by the precise bone channels. The mean depth electrode length was 45.5 mm. Entry point deviation was 0.73 mm (±0.66 mm SD) and target point deviation was 2.0 mm (±0.64 mm SD). Bone channel laser time was ∼30 seconds per channel. Altogether, the implantation time was ∼10 to 15 minutes per electrode. Conclusion Navigated robot-assisted laser for making precise bone channels for depth electrode implantation in epilepsy surgery is a promising new, exact and straightforward implantation technique and may have many advantages over twist drill hole implantation.

2016 ◽  
Vol 18 (5) ◽  
pp. 511-522 ◽  
Author(s):  
Alexander G. Weil ◽  
Aria Fallah ◽  
Evan C. Lewis ◽  
Sanjiv Bhatia

OBJECTIVE Insular lobe epilepsy (ILE) is an under-recognized cause of extratemporal epilepsy and explains some epilepsy surgery failures in children with drug-resistant epilepsy. The diagnosis of ILE usually requires invasive investigation with insular sampling; however, the location of the insula below the opercula and the dense middle cerebral artery vasculature renders its sampling challenging. Several techniques have been described, ranging from open direct placement of orthogonal subpial depth and strip electrodes through a craniotomy to frame-based stereotactic placement of orthogonal or oblique electrodes using stereo-electroencephalography principles. The authors describe an alternative method for sampling the insula, which involves placing insular depth electrodes along the long axis of the insula through the insular apex following dissection of the sylvian fissure in conjunction with subdural electrodes over the lateral hemispheric/opercular region. The authors report the feasibility, advantages, disadvantages, and role of this approach in investigating pediatric insular-opercular refractory epilepsy. METHODS The authors performed a retrospective analysis of all children (< 18 years old) who underwent invasive intracranial studies involving the insula between 2002 and 2015. RESULTS Eleven patients were included in the study (5 boys). The mean age at surgery was 7.6 years (range 0.5–16 years). All patients had drug-resistant epilepsy as defined by the International League Against Epilepsy and underwent comprehensive noninvasive epilepsy surgery workup. Intracranial monitoring was performed in all patients using 1 parasagittal insular electrode (1 patient had 2 electrodes) in addition to subdural grids and strips tailored to the suspected epileptogenic zone. In 10 patients, extraoperative monitoring was used; in 1 patient, intraoperative electrocorticography was used alone without extraoperative monitoring. The mean number of insular contacts was 6.8 (range 4–8), and the mean number of fronto-parieto-temporal hemispheric contacts was 61.7 (range 40–92). There were no complications related to placement of these depth electrodes. All 11 patients underwent subsequent resective surgery involving the insula. CONCLUSIONS Parasagittal transinsular apex depth electrode placement is a feasible alternative to orthogonally placed open or oblique-placed stereotactic methodologies. This method is safe and best suited for suspected unilateral cases with a possible extensive insular-opercular epileptogenic zone.


2017 ◽  
Vol 126 (5) ◽  
pp. 1622-1628 ◽  
Author(s):  
Christian Dorfer ◽  
Georgi Minchev ◽  
Thomas Czech ◽  
Harald Stefanits ◽  
Martha Feucht ◽  
...  

OBJECTIVEThe authors' group recently published a novel technique for a navigation-guided frameless stereotactic approach for the placement of depth electrodes in epilepsy patients. To improve the accuracy of the trajectory and enhance the procedural workflow, the authors implemented the iSys1 miniature robotic device in the present study into this routine.METHODSAs a first step, a preclinical phantom study was performed using a human skull model, and the accuracy and timing between 5 electrodes implanted with the manual technique and 5 with the aid of the robot were compared. After this phantom study showed an increased accuracy with robot-assisted electrode placement and confirmed the robot's ability to maintain stability despite the rotational forces and the leverage effect from drilling and screwing, patients were enrolled and analyzed for robot-assisted depth electrode placement at the authors' institution from January 2014 to December 2015. All procedures were performed with the S7 Surgical Navigation System with Synergy Cranial software and the iSys1 miniature robotic device.RESULTSNinety-three electrodes were implanted in 16 patients (median age 33 years, range 3–55 years; 9 females, 7 males). The authors saw a significant increase in accuracy compared with their manual technique, with a median deviation from the planned entry and target points of 1.3 mm (range 0.1–3.4 mm) and 1.5 mm (range 0.3–6.7 mm), respectively. For the last 5 patients (31 electrodes) of this series the authors modified their technique in placing a guide for implantation of depth electrodes (GIDE) on the bone and saw a significant further increase in the accuracy at the entry point to 1.18 ± 0.5 mm (mean ± SD) compared with 1.54 ± 0.8 mm for the first 11 patients (p = 0.021). The median length of the trajectories was 45.4 mm (range 19–102.6 mm). The mean duration of depth electrode placement from the start of trajectory alignment to fixation of the electrode was 15.7 minutes (range 8.5–26.6 minutes), which was significantly faster than with the manual technique. In 12 patients, depth electrode placement was combined with subdural electrode placement. The procedure was well tolerated in all patients. The authors did not encounter any case of hemorrhage or neurological deficit related to the electrode placement. In 1 patient with a psoriasis vulgaris, a superficial wound infection was encountered. Adequate physiological recordings were obtained from all electrodes. No additional electrodes had to be implanted because of misplacement.CONCLUSIONSThe iSys1 robotic device is a versatile and easy to use tool for frameless implantation of depth electrodes for the treatment of epilepsy. It increased the accuracy of the authors' manual technique by 60% at the entry point and over 30% at the target. It further enhanced and expedited the authors' procedural workflow.


2008 ◽  
Vol 25 (3) ◽  
pp. E19 ◽  
Author(s):  
William J. Spire ◽  
Barbara C. Jobst ◽  
Vijay M. Thadani ◽  
Peter D. Williamson ◽  
Terrance M. Darcey ◽  
...  

Object The authors describe their experience with a technique for robotic implantation of depth electrodes in patients concurrently undergoing craniotomy and placement of subdural monitoring electrodes for the evaluation of intractable epilepsy. Methods Patients included in this study underwent evaluation in the Dartmouth Surgical Epilepsy Program and were recommended for invasive seizure monitoring with depth electrodes between 2006 and the present. In all cases an image-guided robotic system was used during craniotomy for concurrent subdural grid electrode placement. A total of 7 electrodes were placed in 4 patients within the time period. Results Three of 4 patients had successful localization of seizure onset, and 2 underwent subsequent resection. Of the patients who underwent resection, 1 is now seizure free, and the second has only auras. There was 1 complication after subpial grid placement but no complications related to the depth electrodes. Conclusions Robotic image-guided placement of depth electrodes with concurrent craniotomy is feasible, and the technique is safe, accurate, and efficient.


2017 ◽  
Vol 15 (3) ◽  
pp. 302-309 ◽  
Author(s):  
Marcelo Budke ◽  
Josue M Avecillas-Chasin ◽  
Francisco Villarejo

Abstract BACKGROUND Electrode placement in epilepsy surgery seeks to locate the sites of ictal onset and early propagation. An invasive diagnostic procedure, stereoelectroencephalography (SEEG) is usually implemented with frame-based methods that can be especially problematic in young children. OBJECTIVE To evaluate the feasibility and accuracy of a new technique for frameless SEEG in children using the VarioGuide® system (Brainlab AG, München, Germany). METHODS A frameless stereotactic navigation system was used to implant depth electrodes with percutaneous drilling and bolt insertion in pediatric patients with medically refractory epilepsy. Data on general demographic information of electrode implantation, duration, number, and complications were retrospectively collected. To determine the placement accuracy of the VarioGuide® frameless system, the mean Euclidean distances were calculated by comparing the preoperatively planned trajectories with the final electrode position observed on postoperative computed tomography scans. RESULTS From May 2011 to December 2015, 15 patients (8 males, 7 females; mean age: 8 yr, range: 3-16 yr) underwent SEEG depth electrode implantation of a total of 111 electrodes. The mean error measured by the Euclidean distance from the center of the entry point to the intended entry point was 3.64 ± 1.78 mm (range: 0.58-7.59 mm) and the tip of the electrode to the intended target was 2.96 ± 1.49 mm (range: 0.58-7.82 mm). There were no significant complications. CONCLUSION Depth electrodes can be placed safely and accurately in children using the VarioGuide® frameless stereotactic navigation system.


2019 ◽  
Vol 23 (3) ◽  
pp. 297-302 ◽  
Author(s):  
Julia D. Sharma ◽  
Kiran K. Seunarine ◽  
Muhammad Zubair Tahir ◽  
Martin M. Tisdall

OBJECTIVEThe aim of this study was to compare the accuracy of optical frameless neuronavigation (ON) and robot-assisted (RA) stereoelectroencephalography (SEEG) electrode placement in children, and to identify factors that might increase the risk of misplacement.METHODSThe authors undertook a retrospective review of all children who underwent SEEG at their institution. Twenty children were identified who underwent stereotactic placement of a total of 218 electrodes. Six procedures were performed using ON and 14 were placed using a robotic assistant. Placement error was calculated at cortical entry and at the target by calculating the Euclidean distance between the electrode and the planned cortical entry and target points. The Mann-Whitney U-test was used to compare the results for ON and RA placement accuracy. For each electrode placed using robotic assistance, extracranial soft-tissue thickness, bone thickness, and intracranial length were measured. Entry angle of electrode to bone was calculated using stereotactic coordinates. A stepwise linear regression model was used to test for variables that significantly influenced placement error.RESULTSBetween 8 and 17 electrodes (median 10 electrodes) were placed per patient. Median target point localization error was 4.5 mm (interquartile range [IQR] 2.8–6.1 mm) for ON and 1.07 mm (IQR 0.71–1.59) for RA placement. Median entry point localization error was 5.5 mm (IQR 4.0–6.4) for ON and 0.71 mm (IQR 0.47–1.03) for RA placement. The difference in accuracy between Stealth-guided (ON) and RA placement was highly significant for both cortical entry point and target (p < 0.0001 for both). Increased soft-tissue thickness and intracranial length reduced accuracy at the target. Increased soft-tissue thickness, bone thickness, and younger age reduced accuracy at entry. There were no complications.CONCLUSIONSRA stereotactic electrode placement is highly accurate and is significantly more accurate than ON. Larger safety margins away from vascular structures should be used when placing deep electrodes in young children and for trajectories that pass through thicker soft tissues such as the temporal region.


2019 ◽  
Vol 24 (3) ◽  
pp. 284-292
Author(s):  
Eisha A. Christian ◽  
Elysa Widjaja ◽  
Ayako Ochi ◽  
Hiroshi Otsubo ◽  
Stephanie Holowka ◽  
...  

OBJECTIVESmall lesions at the depth of the sulcus, such as with bottom-of-sulcus focal cortical dysplasia, are not visible from the surface of the brain and can therefore be technically challenging to resect. In this technical note, the authors describe their method of using depth electrodes as landmarks for the subsequent resection of these exacting lesions.METHODSA retrospective review was performed on pediatric patients who had undergone invasive electroencephalography with depth electrodes that were subsequently used as guides for resection in the period between July 2015 and June 2017.RESULTSTen patients (3–15 years old) met the criteria for this study. At the same time as invasive subdural grid and/or strip insertion, between 2 and 4 depth electrodes were placed using a hand-held frameless neuronavigation technique. Of the total 28 depth electrodes inserted, all were found within the targeted locations on postoperative imaging. There was 1 patient in whom an asymptomatic subarachnoid hemorrhage was demonstrated on postprocedural imaging. Depth electrodes aided in target identification in all 10 cases.CONCLUSIONSDepth electrodes placed at the time of invasive intracranial electrode implantation can be used to help localize, target, and resect primary zones of epileptogenesis caused by bottom-of-sulcus lesions.


Author(s):  
Thomas Ostergard ◽  
Jonathan P. Miller

Depth electrode placement is an invaluable technique in treating patients with refractory epilepsy. Like any neurosurgical operation, planning is the most important phase of the procedure. The seizure focus should first be grossly localized using data from scalp electrodes and seizure semiology. This gross localization will guide placement of invasive electrophysiological hardware. All electrode implantation methods rely on Talairach’s principles of stereotaxis. Traditional electrode implantation is performed with a stereotactic frame. Evolving techniques use frameless stereotaxy or neuroendoscopy for implantation. The most worrisome complication of electrode placement is electrode-associated intracranial haemorrhage. Electrode deviation is a much more common complication, which can be minimized by avoiding extreme insertion angles, minimizing intracranial electrode length, and maximizing entry point accuracy.


2019 ◽  
Author(s):  
Erin D’Agostino ◽  
John Kanter ◽  
Yinchen Song ◽  
Joshua P Aronson

Abstract BACKGROUND Implantation of depth electrodes to localize epileptogenic foci in patients with drug-resistant epilepsy can be accomplished using traditional rigid frame-based, custom frameless, and robotic stereotactic systems. OBJECTIVE To evaluate the accuracy of electrode implantation using the FHC microTargeting platform, a custom frameless platform, without a rigid insertion cannula. METHODS A total of 182 depth electrodes were implanted in 13 consecutive patients who underwent stereoelectroencephalography (SEEG) for drug-resistant epilepsy using the microTargeting platform and depth electrodes without a rigid guide cannula. MATLAB was utilized to evaluate targeting accuracy. Three manual coordinate measurements with high inter-rater reliability were averaged. RESULTS Patients were predominantly male (77%) with average age 35.62 (SD 11.0, range 21-57) and average age of epilepsy onset at 13.4 (SD 7.2, range 3-26). A mean of 14 electrodes were implanted (range 10-18). Mean operative time was 144 min (range 104-176). Implantation of 3 out of 182 electrodes resulted in nonoperative hemorrhage (2 small subdural hematomas and one small subarachnoid hemorrhage). Putative location of onset was identified in all patients. We demonstrated a median lateral target point localization error (LTPLE) of 3.95 mm (IQR 2.18-6.23), a lateral entry point localization error (LEPLE) of 1.98 mm (IQR 1.2-2.85), a target depth error of 1.71 mm (IQR 1.03-2.33), and total target point localization error (TPLE) of 4.95 mm (IQR 2.98-6.85). CONCLUSION Utilization of the FHC microTargeting platform without the use of insertion cannulae is safe, effective, and accurate. Localization of seizure foci was accomplished in all patients and accuracy of depth electrode placement was satisfactory.


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Caio M Matias ◽  
Sandeep Kandregula ◽  
Chengyuan Wu ◽  
Ashwini D Sharan

Abstract INTRODUCTION Accuracy during SEEG implantations is critical as several electrodes will cross narrow corridors between cerebral blood vessels. Previous studies have compared the accuracy of different techniques such as frame-based, frameless, and robot-assisted implantations and overall SEEG has been reported to be quite safe, with a major complication incidence of less than 1%. Typically, the supine position is utilized for implantation; however, the lateral position may be more comfortable and ergonomic for trajectories with a posterior entry point (eg, posterior approach to the insula). To our knowledge, this is the first study to compare the accuracy of SEEG electrodes implanted in supine position vs lateral position. METHODS About 22 patients who underwent SEEG electrode implantation using Leksell frame fixation and Neuromate robot were included in this study and clustered according to the supine (n = 11) or lateral (n = 11) position. A total of 284 electrodes (Supine: n = 139; Lateral: n = 145) were analyzed. Postoperative Oarm images were co-registered with the preoperative plan on Voxim software. Cartesian coordinates of the entry point (EP) and target point (TP) were obtained from the planned trajectory and the implanted electrode. Three-dimensional error (Euclidian distance) and radial error for EP and TP were calculated. Wilcoxon rank sum test was used to compare lateral versus supine group. RESULTS Radial errors were similar between both groups. EP three-dimensional error was higher in the lateral position group (1.3 mm vs 1.7 mm, P = .004), whereas TP three-dimensional error was higher in the supine position group (2.9 mm vs 1.8 mm, P < .001). CONCLUSION SEEG electrode implantation using frame-based fixation and robot-assisted technique in the lateral position has similar accuracy compared to implantation in the supine position.


Sign in / Sign up

Export Citation Format

Share Document