MRF-RFS: A Modified Random Forest Recursive Feature Selection Algorithm for Nasopharyngeal Carcinoma Segmentation

2020 ◽  
Vol 59 (04/05) ◽  
pp. 151-161
Author(s):  
Yuchen Fei ◽  
Fengyu Zhang ◽  
Chen Zu ◽  
Mei Hong ◽  
Xingchen Peng ◽  
...  

Abstract Background An accurate and reproducible method to delineate tumor margins is of great importance in clinical diagnosis and treatment. In nasopharyngeal carcinoma (NPC), due to limitations such as high variability, low contrast, and discontinuous boundaries in presenting soft tissues, tumor margin can be extremely difficult to identify in magnetic resonance imaging (MRI), increasing the challenge of NPC segmentation task. Objectives The purpose of this work is to develop a semiautomatic algorithm for NPC image segmentation with minimal human intervention, while it is also capable of delineating tumor margins with high accuracy and reproducibility. Methods In this paper, we propose a novel feature selection algorithm for the identification of the margin of NPC image, named as modified random forest recursive feature selection (MRF-RFS). Specifically, to obtain a more discriminative feature subset for segmentation, a modified recursive feature selection method is applied to the original handcrafted feature set. Moreover, we combine the proposed feature selection method with the classical random forest (RF) in the training stage to take full advantage of its intrinsic property (i.e., feature importance measure). Results To evaluate the segmentation performance, we verify our method on the T1-weighted MRI images of 18 NPC patients. The experimental results demonstrate that the proposed MRF-RFS method outperforms the baseline methods and deep learning methods on the task of segmenting NPC images. Conclusion The proposed method could be effective in NPC diagnosis and useful for guiding radiation therapy.

2021 ◽  
Author(s):  
K venkatachalam ◽  
P Prabhu ◽  
B saravana Balaji ◽  
Mohamed Abouhawwash ◽  
R Rajadevi

Abstract In day today life, diabetes illness is increasing in count due to the body not able to metabolize the glucose level. The prediction of the right diabetes patients is an important research area that many researchers are proposing the techniques to predict this disease through data mining and machine learning methods. In prediction, feature selection is one of the key concept in preprocessing so that the features that are relevant to the disease will be used for prediction. This will improve the prediction accuracy. Selecting right features among the whole feature set is a complicated process and many researchers are concentrating on it to produce the predictive model with high accuracy. In this proposed work, the wrapper based feature selection method called Recursive Feature Elimination (RFE) is combined with Ridge regression (L2) to form a hybrid L2 regulated feature selection algorithm to overcome the overfilling problem of the data set. Over fitting is the major problem in feature selection which means that the new data are not fit to the model since the training data is small. Ridge regression is mainly used to overcome the overfitting problem. Once the features are selected using the proposed feature selection method, random forest classifier is used to classify the data based on the selected features. The proposed work is experimented in PIDD data set and the evaluated results are compared with the existing algorithms to prove the accuracy effect of the proposed algorithm. From the results obtained by proposed algorithm, the accuracy of predicting the diabetes disease is high compared to other existing algorithms.


Author(s):  
Chunyong Yin ◽  
Luyu Ma ◽  
Lu Feng

Intrusion detection is a kind of security mechanism which is used to detect attacks and intrusion behaviors. Due to the low accuracy and the high false positive rate of the existing clonal selection algorithms applied to intrusion detection, in this paper, we proposed a feature selection method for improved clonal algorithm. The improved method detects the intrusion behavior by selecting the best individual overall and clones them. Experimental results show that the feature selection algorithm is better than the traditional feature selection algorithm on the different classifiers, and it is shown that the final detection results are better than traditional clonal algorithm with 99.6% accuracy and 0.1% false positive rate.


2020 ◽  
Author(s):  
Esra Sarac Essiz ◽  
Murat Oturakci

Abstract As a nature-inspired algorithm, artificial bee colony (ABC) is an optimization algorithm that is inspired by the search behaviour of honey bees. The main aim of this study is to examine the effects of the ABC-based feature selection algorithm on classification performance for cyberbullying, which has become a significant worldwide social issue in recent years. With this purpose, the classification performance of the proposed ABC-based feature selection method is compared with three different traditional methods such as information gain, ReliefF and chi square. Experimental results present that ABC-based feature selection method outperforms than three traditional methods for the detection of cyberbullying. The Macro averaged F_measure of the data set is increased from 0.659 to 0.8 using proposed ABC-based feature selection method.


2014 ◽  
Vol 926-930 ◽  
pp. 3100-3104 ◽  
Author(s):  
Xi Wang ◽  
Qiang Li ◽  
Zhi Hong Xie

This article analyzed the defects of SVM-RFE feature selection algorithm, put forward new feature selection method combined SVM-RFE and PCA. Firstly, get the best feature subset through the method of cross validation of k based on SVM-RFE. Then, the PCA decreased the dimension of the feature subset and got the independent feature subset. The independent feature subset was the training and testing subset of SVM. Make experiments on five subsets of UCI, the results indicated that the training and testing time was shortened and the recognition accuracy rate of the SVM was higher.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1709-1712
Author(s):  
Kai Min Song ◽  
Xun Yi Ren

Through the research on the flow identification algorithm based on statistical feature, this paper puts forward the statistical feature selection algorithm in order to reduce the number of features in identification, increase the speed of the flow identification, the experimental results show that the algorithm can effectively reduce the amount of features, improve the efficiency of identification.


One of the preprocessing steps is data cleaning and feature selection in data mining. Feature selection has more efficiency regarding dimensionality reduction, eliminating irrelevant data, improving the accuracy and enhancing the output comprehensibility. This paper utilizes wrapper / hybridfilter based feature selection method for feature selection and extraction from medical dataset. From the extracted information, the individual features are evaluated by calculating a rank value where it helps to choose highly correlated data from the entire dataset. Selected features are classified using the popular C4.5 classifier. To experiment the proposed method, the benchmark dataset is obtained from the UCI repository. It is a famous machine learning repository used by several earlier research works to evaluate the performance of their proposed methods. Finally, the accuracy of the classification method shows that our proposed method outperforms than the existing methods


2021 ◽  
pp. 1-15
Author(s):  
Zhaozhao Xu ◽  
Derong Shen ◽  
Yue Kou ◽  
Tiezheng Nie

Due to high-dimensional feature and strong correlation of features, the classification accuracy of medical data is not as good enough as expected. feature selection is a common algorithm to solve this problem, and selects effective features by reducing the dimensionality of high-dimensional data. However, traditional feature selection algorithms have the blindness of threshold setting and the search algorithms are liable to fall into a local optimal solution. Based on it, this paper proposes a hybrid feature selection algorithm combining ReliefF and Particle swarm optimization. The algorithm is mainly divided into three parts: Firstly, the ReliefF is used to calculate the feature weight, and the features are ranked by the weight. Then ranking feature is grouped according to the density equalization, where the density of features in each group is the same. Finally, the Particle Swarm Optimization algorithm is used to search the ranking feature groups, and the feature selection is performed according to a new fitness function. Experimental results show that the random forest has the highest classification accuracy on the features selected. More importantly, it has the least number of features. In addition, experimental results on 2 medical datasets show that the average accuracy of random forest reaches 90.20%, which proves that the hybrid algorithm has a certain application value.


Author(s):  
Wenjie Liu ◽  
Shanshan Wang ◽  
Xin Chen ◽  
He Jiang

In software maintenance process, it is a fairly important activity to predict the severity of bug reports. However, manually identifying the severity of bug reports is a tedious and time-consuming task. So developing automatic judgment methods for predicting the severity of bug reports has become an urgent demand. In general, a bug report contains a lot of descriptive natural language texts, thus resulting in a high-dimensional feature set which poses serious challenges to traditionally automatic methods. Therefore, we attempt to use automatic feature selection methods to improve the performance of the severity prediction of bug reports. In this paper, we introduce a ranking-based strategy to improve existing feature selection algorithms and propose an ensemble feature selection algorithm by combining existing ones. In order to verify the performance of our method, we run experiments over the bug reports of Eclipse and Mozilla and conduct comparisons with eight commonly used feature selection methods. The experiment results show that the ranking-based strategy can effectively improve the performance of the severity prediction of bug reports by up to 54.76% on average in terms of [Formula: see text]-measure, and it also can significantly reduce the dimension of the feature set. Meanwhile, the ensemble feature selection method can get better results than a single feature selection algorithm.


Author(s):  
ShuRui Li ◽  
Jing Jin ◽  
Ian Daly ◽  
Chang Liu ◽  
Andrzej Cichocki

Abstract Brain–computer interface (BCI) systems decode electroencephalogram signals to establish a channel for direct interaction between the human brain and the external world without the need for muscle or nerve control. The P300 speller, one of the most widely used BCI applications, presents a selection of characters to the user and performs character recognition by identifying P300 event-related potentials from the EEG. Such P300-based BCI systems can reach good levels of accuracy but are difficult to use in day-to-day life due to redundancy and noisy signal. A room for improvement should be considered. We propose a novel hybrid feature selection method for the P300-based BCI system to address the problem of feature redundancy, which combines the Menger curvature and linear discriminant analysis. First, selected strategies are applied separately to a given dataset to estimate the gain for application to each feature. Then, each generated value set is ranked in descending order and judged by a predefined criterion to be suitable in classification models. The intersection of the two approaches is then evaluated to identify an optimal feature subset. The proposed method is evaluated using three public datasets, i.e., BCI Competition III dataset II, BNCI Horizon dataset, and EPFL dataset. Experimental results indicate that compared with other typical feature selection and classification methods, our proposed method has better or comparable performance. Additionally, our proposed method can achieve the best classification accuracy after all epochs in three datasets. In summary, our proposed method provides a new way to enhance the performance of the P300-based BCI speller.


Sign in / Sign up

Export Citation Format

Share Document