scholarly journals Recursive Feature Elimination with Ridge Regression (L2) Machine Learning Hybrid Feature Selection Algorithm for Diabetic Prediction using Random Forest Classifer.

Author(s):  
K venkatachalam ◽  
P Prabhu ◽  
B saravana Balaji ◽  
Mohamed Abouhawwash ◽  
R Rajadevi

Abstract In day today life, diabetes illness is increasing in count due to the body not able to metabolize the glucose level. The prediction of the right diabetes patients is an important research area that many researchers are proposing the techniques to predict this disease through data mining and machine learning methods. In prediction, feature selection is one of the key concept in preprocessing so that the features that are relevant to the disease will be used for prediction. This will improve the prediction accuracy. Selecting right features among the whole feature set is a complicated process and many researchers are concentrating on it to produce the predictive model with high accuracy. In this proposed work, the wrapper based feature selection method called Recursive Feature Elimination (RFE) is combined with Ridge regression (L2) to form a hybrid L2 regulated feature selection algorithm to overcome the overfilling problem of the data set. Over fitting is the major problem in feature selection which means that the new data are not fit to the model since the training data is small. Ridge regression is mainly used to overcome the overfitting problem. Once the features are selected using the proposed feature selection method, random forest classifier is used to classify the data based on the selected features. The proposed work is experimented in PIDD data set and the evaluated results are compared with the existing algorithms to prove the accuracy effect of the proposed algorithm. From the results obtained by proposed algorithm, the accuracy of predicting the diabetes disease is high compared to other existing algorithms.

2020 ◽  
Vol 59 (04/05) ◽  
pp. 151-161
Author(s):  
Yuchen Fei ◽  
Fengyu Zhang ◽  
Chen Zu ◽  
Mei Hong ◽  
Xingchen Peng ◽  
...  

Abstract Background An accurate and reproducible method to delineate tumor margins is of great importance in clinical diagnosis and treatment. In nasopharyngeal carcinoma (NPC), due to limitations such as high variability, low contrast, and discontinuous boundaries in presenting soft tissues, tumor margin can be extremely difficult to identify in magnetic resonance imaging (MRI), increasing the challenge of NPC segmentation task. Objectives The purpose of this work is to develop a semiautomatic algorithm for NPC image segmentation with minimal human intervention, while it is also capable of delineating tumor margins with high accuracy and reproducibility. Methods In this paper, we propose a novel feature selection algorithm for the identification of the margin of NPC image, named as modified random forest recursive feature selection (MRF-RFS). Specifically, to obtain a more discriminative feature subset for segmentation, a modified recursive feature selection method is applied to the original handcrafted feature set. Moreover, we combine the proposed feature selection method with the classical random forest (RF) in the training stage to take full advantage of its intrinsic property (i.e., feature importance measure). Results To evaluate the segmentation performance, we verify our method on the T1-weighted MRI images of 18 NPC patients. The experimental results demonstrate that the proposed MRF-RFS method outperforms the baseline methods and deep learning methods on the task of segmenting NPC images. Conclusion The proposed method could be effective in NPC diagnosis and useful for guiding radiation therapy.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Nicholas Nuechterlein ◽  
Beibin Li ◽  
Abdullah Feroze ◽  
Eric C Holland ◽  
Linda Shapiro ◽  
...  

Abstract Background Combined whole-exome sequencing (WES) and somatic copy number alteration (SCNA) information can separate isocitrate dehydrogenase (IDH)1/2-wildtype glioblastoma into two prognostic molecular subtypes, which cannot be distinguished by epigenetic or clinical features. The potential for radiographic features to discriminate between these molecular subtypes has yet to be established. Methods Radiologic features (n = 35 340) were extracted from 46 multisequence, pre-operative magnetic resonance imaging (MRI) scans of IDH1/2-wildtype glioblastoma patients from The Cancer Imaging Archive (TCIA), all of whom have corresponding WES/SCNA data. We developed a novel feature selection method that leverages the structure of extracted MRI features to mitigate the dimensionality challenge posed by the disparity between a large number of features and the limited patients in our cohort. Six traditional machine learning classifiers were trained to distinguish molecular subtypes using our feature selection method, which was compared to least absolute shrinkage and selection operator (LASSO) feature selection, recursive feature elimination, and variance thresholding. Results We were able to classify glioblastomas into two prognostic subgroups with a cross-validated area under the curve score of 0.80 (±0.03) using ridge logistic regression on the 15-dimensional principle component analysis (PCA) embedding of the features selected by our novel feature selection method. An interrogation of the selected features suggested that features describing contours in the T2 signal abnormality region on the T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI sequence may best distinguish these two groups from one another. Conclusions We successfully trained a machine learning model that allows for relevant targeted feature extraction from standard MRI to accurately predict molecularly-defined risk-stratifying IDH1/2-wildtype glioblastoma patient groups.


Author(s):  
Chunyong Yin ◽  
Luyu Ma ◽  
Lu Feng

Intrusion detection is a kind of security mechanism which is used to detect attacks and intrusion behaviors. Due to the low accuracy and the high false positive rate of the existing clonal selection algorithms applied to intrusion detection, in this paper, we proposed a feature selection method for improved clonal algorithm. The improved method detects the intrusion behavior by selecting the best individual overall and clones them. Experimental results show that the feature selection algorithm is better than the traditional feature selection algorithm on the different classifiers, and it is shown that the final detection results are better than traditional clonal algorithm with 99.6% accuracy and 0.1% false positive rate.


Author(s):  
J. V. D. Prasad ◽  
A. Raghuvira Pratap ◽  
Babu Sallagundla

With the rapid increase in number of clinical data and hence the prediction and analysing data becomes very difficult. With the help of various machine learning models, it becomes easy to work on these huge data. A machine learning model faces lots of challenges; one among the challenge is feature selection. In this research work, we propose a novel feature selection method based on statistical procedures to increase the performance of the machine learning model. Furthermore, we have tested the feature selection algorithm in liver disease classification dataset and the results obtained shows the efficiency of the proposed method.


Diabetes has become a serious problem now a day. So there is a need to take serious precautions to eradicate this. To eradicate, we should know the level of occurrence. In this project we predict the level of occurrence of diabetes. We predict the level of occurrence of diabetes using Random Forest, a Machine Learning Algorithm. Using the patient’s Electronic Health Records (EHR) we can build accurate models that predict the presence of diabetes.


2020 ◽  
Author(s):  
Esra Sarac Essiz ◽  
Murat Oturakci

Abstract As a nature-inspired algorithm, artificial bee colony (ABC) is an optimization algorithm that is inspired by the search behaviour of honey bees. The main aim of this study is to examine the effects of the ABC-based feature selection algorithm on classification performance for cyberbullying, which has become a significant worldwide social issue in recent years. With this purpose, the classification performance of the proposed ABC-based feature selection method is compared with three different traditional methods such as information gain, ReliefF and chi square. Experimental results present that ABC-based feature selection method outperforms than three traditional methods for the detection of cyberbullying. The Macro averaged F_measure of the data set is increased from 0.659 to 0.8 using proposed ABC-based feature selection method.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1709-1712
Author(s):  
Kai Min Song ◽  
Xun Yi Ren

Through the research on the flow identification algorithm based on statistical feature, this paper puts forward the statistical feature selection algorithm in order to reduce the number of features in identification, increase the speed of the flow identification, the experimental results show that the algorithm can effectively reduce the amount of features, improve the efficiency of identification.


Author(s):  
Esraa H. Abd Al-Ameer, Ahmed H. Aliwy

Documents classification is from most important fields for Natural language processing and text mining. There are many algorithms can be used for this task. In this paper, focuses on improving Text Classification by feature selection. This means determine some of the original features without affecting the accuracy of the work, where our work is a new feature selection method was suggested which can be a general formulation and mathematical model of Recursive Feature Elimination (RFE). The used method was compared with other two well-known feature selection methods: Chi-square and threshold. The results proved that the new method is comparable with the other methods, The best results were 83% when 60% of features used, 82% when 40% of features used, and 82% when 20% of features used. The tests were done with the Naïve Bayes (NB) and decision tree (DT) classification algorithms , where the used dataset is a well-known English data set “20 newsgroups text” consists of approximately 18846 files. The results showed that our suggested feature selection method is comparable with standard Like Chi-square.


One of the preprocessing steps is data cleaning and feature selection in data mining. Feature selection has more efficiency regarding dimensionality reduction, eliminating irrelevant data, improving the accuracy and enhancing the output comprehensibility. This paper utilizes wrapper / hybridfilter based feature selection method for feature selection and extraction from medical dataset. From the extracted information, the individual features are evaluated by calculating a rank value where it helps to choose highly correlated data from the entire dataset. Selected features are classified using the popular C4.5 classifier. To experiment the proposed method, the benchmark dataset is obtained from the UCI repository. It is a famous machine learning repository used by several earlier research works to evaluate the performance of their proposed methods. Finally, the accuracy of the classification method shows that our proposed method outperforms than the existing methods


Sign in / Sign up

Export Citation Format

Share Document