scholarly journals Prediction of Permeation and Cellular Transport of Silybum marianum Extract Formulated in a Nanoemulsion by Using PAMPA and Caco-2 Cell Models

Planta Medica ◽  
2017 ◽  
Vol 83 (14/15) ◽  
pp. 1184-1193 ◽  
Author(s):  
Vieri Piazzini ◽  
Chiara Rosseti ◽  
Elisabetta Bigagli ◽  
Cristina Luceri ◽  
Anna Bilia ◽  
...  

AbstractThe present study explores the potential of nanoemulsion, a lipid drug delivery system, to improve solubility and oral absorption of Silybum marianum extract. The optimized formulation contained 40 mg/mL of commercial extract (4 % w/w) and it was composed of 2.5 g labrasol (20 %) as the oil phase, 1.5 g cremophor EL as the surfactant, and 1 g labrafil as the cosurfactant (mixture surfactant/cosurfactant, 20 %).The system was characterized by dynamic light scattering, transmission electron microscopy, and HPLC-DAD analyses in order to evaluate size, homogeneity, morphology, and encapsulation efficiency. Physical and chemical stabilities were assessed during 40 days at 4 °C and 3 months at 25 °C. Stability in simulated gastric fluid followed by simulated intestinal conditions was also considered. In vitro permeation studies were performed to determine the suitability of the prepared nanoemulsion for oral delivery. Different models such as the parallel artificial membrane permeability assay and Caco-2 cell lines were applied.The nanoemulsion showed a good solubilizing effect of the extract, with a pronounced action also on its permeability, in respect to a saturated aqueous solution. The Caco-2 test confirmed the parallel artificial membrane permeability assay results and they revealed the suitability of the prepared nanoemulsion for oral delivery.

2006 ◽  
Vol 12 (1) ◽  
pp. 84-91 ◽  
Author(s):  
Mark Lakeram ◽  
David J. Lockley ◽  
David J. Sanders ◽  
Ruth Pendlington ◽  
Ben Forbes

Noncellular and cellular in vitro models for predicting intestinal absorption were used to investigate the transport and metabolism of parabens. The biomimetic artificial membrane permeability assay (BAMPA) membrane was constructed by impregnating a lipid solution on a hydrophobic filter. Caco-2 cells at passage numbers 65 to 80 were cultured in either the accelerated 3-day Biocoat™ system or the standard 21-day Transwell™ cell culture system. Paraben transport across the BAMPA system showed a parabolic relationship. The lowest log P (p-hydroxybenzoic acid) and highest log P compounds (heptyl and octyl parabens) had apparent permeabilities (Papp) less than 1.0 × 10-6 cm/s and Papp was maximal at approximately 8.5 × 10-6cm/s for the intermediate log P (ethylparaben) compound. With the Biocoat™, a similar parabolic relationship was found. In the 21-day Caco-2 cells, the parabens were metabolized by esterases at to p-hydroxybenzoic acid. In conclusion, the in vitro models added complementary insight into the absorption process, such as the transport route, intrinsic permeability, and extent of metabolism of the parabens. This study indicated that presystemic metabolism of orally ingested parabens to the p-hydroxybenzoic acid in the intestine may limit systemic exposure to alkyl-paraben esters in vivo.


Author(s):  
Imran Saleem ◽  
Allan Coombes ◽  
Mark Chambers

Bacillus Calmette-Guérin (BCG) vaccine is the only licensed vaccine against tuberculosis (TB) in humans and animals. It is most commonly administered parenterally but oral delivery is highly advantageous for immunisation of cattle and wildlife hosts of TB in particular. Since BCG is susceptible to inactivation in the gut, vaccine formulations were prepared from suspensions of Eudragit L100 copolymer powder and BCG in PBS, containing Tween 80, with and without the addition of mannitol or trehalose. Samples were frozen at -20oC, freeze-dried and the lyophilised powders were compressed to produce BCG-Eudragit matrices. Production of the dried powders resulted in a reduction in BCG viability. Substantial losses in viability occurred at the initial formulation stage and at the stage of powder compaction. Data indicated that the Eudragit matrix protected BCG against simulated gastric fluid (SGF). The matrices remained intact in SGF and dissolved completely in SIF within three hours. The inclusion of mannitol or trehalose in the matrix provided additional protection to BCG during freeze-drying. Control needs to be exercised over BCG aggregation, freeze-drying and powder compaction conditions to minimise physical damage of the bacterial cell wall and maximise the viability of oral BCG vaccines prepared by dry powder compaction.


Author(s):  
Bhabani Satapathy ◽  
Asuprita Patel ◽  
Rudra Sahoo ◽  
Subrata Mallick

Crystal engineering is an integral part of the drug development research. Crystal forms can modify the physicochemical properties of the parent drug molecule. The present work was aimed at the synthesis and characterization of crystalline product of lamotrigine (LT), a FDA approved anti-epileptic drug, with citric acid (CA) to improve its release in gastric region and oral absorption. The crystalline products of LT-CA were developed by solvent evaporation method using ethanol-water as the solvent system. Appearance of new charac-teristic peaks in the FTIR spectra for the crystal products indicated formation of new crystal state. In DSC thermogram, melting point of the experimental crystal products was different than that of the pure drug. Further, formation of new crystalline phase was confirmed from XRD data through the identification of new sharp peaks for the selected crystal products. A higher cumulative percen-tage of drug release was observed for the crystal products than the free drug within 60 min of drug release in simulated gastric fluid. However, in vivo studies are warranted for the future technology transfer of the product at industrial scale.


2012 ◽  
Vol 506 ◽  
pp. 517-520 ◽  
Author(s):  
S. Sriraksa ◽  
N. Sermkaew ◽  
S. Setthacheewakul ◽  
R. Wiwattanapatapee

Tetrahydrocurcumin (THC), one of the curcumin metabolites, exhibits pharmacological activities such as antioxidant, anti-inflammatory and anti-carcinogenic properties. However, the pharmacological effect of THC is limited due to its low aqueous solubility. Floating alginate beads containing self-emulsifying drug delivery system (SEDDS) of THC were developed to increase drug solubility and prolong gastric residence time. Use of different weight proportions of sodium alginate (Na-alg.), calcium chloride (CaCl2) and water soluble pore former (Polyvinylalcohol-polyethylene glycol copolymer; Kollicoat® IR) in bead formulations had different effects on the floating abilities and in vitro rate of THC release. The release profile of the optimized THC-SEDDS floating alginate beads (D3) indicated a significant increase in the dissolution rate of THC and provided a controlled release of THC over an 8 h period in a simulated gastric fluid. The release of about 80% of THC from the optimized beads as an o/w microemulsion with a particle size of less than 50 nm, compared to only 30 % by an aqueous suspension from the unformulated THC could be considerable greater absorbed. The self-emulsifying floating alginate beads may provide a useful solid dosage form for oral delivery of THC and other hydrophobic compounds.


2008 ◽  
Vol 74 (15) ◽  
pp. 4799-4805 ◽  
Author(s):  
Yongsheng Ma ◽  
Jennifer C. Pacan ◽  
Qi Wang ◽  
Yongping Xu ◽  
Xiaoqing Huang ◽  
...  

ABSTRACT This paper reports the development of microencapsulated bacteriophage Felix O1 for oral delivery using a chitosan-alginate-CaCl2 system. In vitro studies were used to determine the effects of simulated gastric fluid (SGF) and bile salts on the viability of free and encapsulated phage. Free phage Felix O1 was found to be extremely sensitive to acidic environments and was not detectable after a 5-min exposure to pHs below 3.7. In contrast, the number of microencapsulated phage decreased by 0.67 log units only, even at pH 2.4, for the same period of incubation. The viable count of microencapsulated phage decreased only 2.58 log units during a 1-h exposure to SGF with pepsin at pH 2.4. After 3 h of incubation in 1 and 2% bile solutions, the free phage count decreased by 1.29 and 1.67 log units, respectively, while the viability of encapsulated phage was fully maintained. Encapsulated phage was completely released from the microspheres upon exposure to simulated intestinal fluid (pH 6.8) within 6 h. The encapsulated phage in wet microspheres retained full viability when stored at 4°C for the duration of the testing period (6 weeks). With the use of trehalose as a stabilizing agent, the microencapsulated phage in dried form had a 12.6% survival rate after storage for 6 weeks. The current encapsulation technique enables a large proportion of bacteriophage Felix O1 to remain bioactive in a simulated gastrointestinal tract environment, which indicates that these microspheres may facilitate delivery of therapeutic phage to the gut.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 270
Author(s):  
Imran Saleem ◽  
Allan G. A. Coombes ◽  
Mark A. Chambers

Bacillus Calmette–Guérin (BCG) vaccine is the only licensed vaccine against tuberculosis (TB) in humans and animals. It is most commonly administered parenterally, but oral delivery is highly advantageous for the immunisation of cattle and wildlife hosts of TB in particular. Since BCG is susceptible to inactivation in the gut, vaccine formulations were prepared from suspensions of Eudragit L100 copolymer powder and BCG in phosphate-buffered saline (PBS), containing Tween® 80, with and without the addition of mannitol or trehalose. Samples were frozen at −20 °C, freeze-dried and the lyophilised powders were compressed to produce BCG–Eudragit matrices. Production of the dried powders resulted in a reduction in BCG viability. Substantial losses in viability occurred at the initial formulation stage and at the stage of powder compaction. Data indicated that the Eudragit matrix protected BCG against simulated gastric fluid (SGF). The matrices remained intact in SGF and dissolved completely in simulated intestinal fluid (SIF) within three hours. The inclusion of mannitol or trehalose in the matrix provided additional protection to BCG during freeze-drying. Control needs to be exercised over BCG aggregation, freeze-drying and powder compaction conditions to minimise physical damage of the bacterial cell wall and maximise the viability of oral BCG vaccines prepared by dry powder compaction.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 449
Author(s):  
Ahmed M. Omer ◽  
Zyta M. Ziora ◽  
Tamer M. Tamer ◽  
Randa E. Khalifa ◽  
Mohamed A. Hassan ◽  
...  

An effective drug nanocarrier was developed on the basis of a quaternized aminated chitosan (Q-AmCs) derivative for the efficient encapsulation and slow release of the curcumin (Cur)-drug. A simple ionic gelation method was conducted to formulate Q-AmCs nanoparticles (NPs), using different ratios of sodium tripolyphosphate (TPP) as an ionic crosslinker. Various characterization tools were employed to investigate the structure, surface morphology, and thermal properties of the formulated nanoparticles. The formulated Q-AmCs NPs displayed a smaller particle size of 162 ± 9.10 nm, and higher surface positive charges, with a maximum potential of +48.3 mV, compared to native aminated chitosan (AmCs) NPs (231 ± 7.14 nm, +32.8 mV). The Cur-drug encapsulation efficiency was greatly improved and reached a maximum value of 94.4 ± 0.91%, compared to 75.0 ± 1.13% for AmCs NPs. Moreover, the in vitro Cur-release profile was investigated under the conditions of simulated gastric fluid [SGF; pH 1.2] and simulated colon fluid [SCF; pH 7.4]. For Q-AmCs NPs, the Cur-release rate was meaningfully decreased, and recorded a cumulative release value of 54.0% at pH 7.4, compared to 73.0% for AmCs NPs. The formulated nanoparticles exhibited acceptable biocompatibility and biodegradability. These findings emphasize that Q-AmCs NPs have an outstanding potential for the delivery and slow release of anticancer drugs.


Sign in / Sign up

Export Citation Format

Share Document