The PDZ-domain binding protein PDZK1/CAP70 is involved in the regulation of murine intestinal NHE3 and CFTR function

2005 ◽  
Vol 43 (05) ◽  
Author(s):  
A Cinar ◽  
J Hillesheim ◽  
B Tuo ◽  
B Riederer ◽  
MP Manns ◽  
...  
Keyword(s):  
Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 416
Author(s):  
Timothy J. Bowden ◽  
Igor Kraev ◽  
Sigrun Lange

Oysters and clams are important for food security and of commercial value worldwide. They are affected by anthropogenic changes and opportunistic pathogens and can be indicators of changes in ocean environments. Therefore, studies into biomarker discovery are of considerable value. This study aimed at assessing extracellular vesicle (EV) signatures and post-translational protein deimination profiles of hemolymph from four commercially valuable Mollusca species, the blue mussel (Mytilus edulis), soft shell clam (Mya arenaria), Eastern oyster (Crassostrea virginica), and Atlantic jacknife clam (Ensis leei). EVs form part of cellular communication by transporting protein and genetic cargo and play roles in immunity and host–pathogen interactions. Protein deimination is a post-translational modification caused by peptidylarginine deiminases (PADs), and can facilitate protein moonlighting in health and disease. The current study identified hemolymph-EV profiles in the four Mollusca species, revealing some species differences. Deiminated protein candidates differed in hemolymph between the species, with some common targets between all four species (e.g., histone H3 and H4, actin, and GAPDH), while other hits were species-specific; in blue mussel these included heavy metal binding protein, heat shock proteins 60 and 90, 2-phospho-D-glycerate hydrolyase, GTP cyclohydrolase feedback regulatory protein, sodium/potassium-transporting ATPase, and fibrinogen domain containing protein. In soft shell clam specific deimination hits included dynein, MCM3-associated protein, and SCRN. In Eastern oyster specific deimination hits included muscle LIM protein, beta-1,3-glucan-binding protein, myosin heavy chain, thaumatin-like protein, vWFA domain-containing protein, BTB domain-containing protein, amylase, and beta-catenin. Deiminated proteins specific to Atlantic jackknife clam included nacre c1q domain-containing protein and PDZ domain-containing protein In addition, some proteins were common as deiminated targets between two or three of the Bivalvia species under study (e.g., EP protein, C1q domain containing protein, histone H2B, tubulin, elongation factor 1-alpha, dominin, extracellular superoxide dismutase). Protein interaction network analysis for the deiminated protein hits revealed major pathways relevant for immunity and metabolism, providing novel insights into post-translational regulation via deimination. The study contributes to EV characterization in diverse taxa and understanding of roles for PAD-mediated regulation of immune and metabolic pathways throughout phylogeny.


2002 ◽  
Vol 269 (24) ◽  
pp. 6241-6249 ◽  
Author(s):  
Hortensia Mircescu ◽  
Séverine Steuve ◽  
Valérie Savonet ◽  
Chantal Degraef ◽  
Harry Mellor ◽  
...  

1999 ◽  
Vol 19 (15) ◽  
pp. 6506-6518 ◽  
Author(s):  
Tobias M. Boeckers ◽  
Michael R. Kreutz ◽  
Carsten Winter ◽  
Werner Zuschratter ◽  
Karl-Heinz Smalla ◽  
...  

1999 ◽  
Vol 10 (4) ◽  
pp. 819-832 ◽  
Author(s):  
Robert C. Bunn ◽  
Mari Anne Jensen ◽  
Brent C. Reed

Subcellular targeting and the activity of facilitative glucose transporters are likely to be regulated by interactions with cellular proteins. This report describes the identification and characterization of a protein, GLUT1 C-terminal binding protein (GLUT1CBP), that binds via a PDZ domain to the C terminus of GLUT1. The interaction requires the C-terminal four amino acids of GLUT1 and is isoform specific because GLUT1CBP does not interact with the C terminus of GLUT3 or GLUT4. Most rat tissues examined contain both GLUT1CBP and GLUT1 mRNA, whereas only small intestine lacked detectable GLUT1CBP protein. GLUT1CBP is also expressed in primary cultures of neurons and astrocytes, as well as in Chinese hamster ovary, 3T3-L1, Madin–Darby canine kidney, Caco-2, and pheochromocytoma-12 cell lines. GLUT1CBP is able to bind to native GLUT1 extracted from cell membranes, self-associate, or interact with the cytoskeletal proteins myosin VI, α-actinin-1, and the kinesin superfamily protein KIF-1B. The presence of a PDZ domain places GLUT1CBP among a growing family of structural and regulatory proteins, many of which are localized to areas of membrane specialization. This and its ability to interact with GLUT1 and cytoskeletal proteins implicate GLUT1CBP in cellular mechanisms for targeting GLUT1 to specific subcellular sites either by tethering the transporter to cytoskeletal motor proteins or by anchoring the transporter to the actin cytoskeleton.


2001 ◽  
Vol 354 (3) ◽  
pp. 635-643 ◽  
Author(s):  
Wey-Jinq LIN ◽  
Yaun-Fu CHANG ◽  
Wei-Li WANG ◽  
Chi-Ying F. HUANG

TIS21 is induced transiently by PMA and a number of extracellular stimuli. Yeast two-hybrid screening has identified three TIS21 interacting clones from a rat cDNA library [Lin, Gary, Yang, Clarke and Herschman (1996) J. Biol. Chem 271, 15034–15044]. The amino acid sequence deduced from clone 5A shows 96.9% identity with the murine PICK1, a protein kinase Cα (PKCα)-binding protein postulated to act as an intracellular receptor for PKC. A fusion protein of glutathione S-transferase and rPICK1 associates with the TIS21 translated in vitro, suggesting a direct physical interaction between these two proteins. TIS21 and rPICK1 are co-immunoprecipitated from NIH 3T3 cells overexpressing these two proteins. This indicates that the interaction also occurs in mammalian cells. Deletion of the PDZ domain at the N-terminus of rPICK1 abolishes its interaction with TIS21. A putative carboxylate-binding loop required for PICK1 to bind PKCα [Staudinger, Lu and Olson (1997) J. Biol. Chem 272, 32019–32024] is within this deleted region. Our results suggest a potential competition between TIS21 and PKC for binding to PICK1. We show that recombinant TIS21 is phosphorylated by PKC in vitro. The catalytic activity of PKC towards TIS21 is significantly decreased in the presence of rPICK1, whereas phosphorylation of histone by PKC is not affected. rPICK1 seems to modulate the phosphorylation of TIS21 through specific interactions between these two proteins. TIS21 might have a role in PKC-mediated extracellular signal transduction through its interaction with rPICK1.


1999 ◽  
Vol 10 (6) ◽  
pp. 1973-1984 ◽  
Author(s):  
Pamela M. Guy ◽  
Daryn A. Kenny ◽  
Gordon N. Gill

PDZ and LIM domains are modular protein interaction motifs present in proteins with diverse functions. Enigma is representative of a family of proteins composed of a series of conserved PDZ and LIM domains. The LIM domains of Enigma and its most related family member, Enigma homology protein, bind to protein kinases, whereas the PDZ domains of Enigma and family member actin-associated LIM protein bind to actin filaments. Enigma localizes to actin filaments in fibroblasts via its PDZ domain, and actin-associated LIM protein binds to and colocalizes with the actin-binding protein α-actinin-2 at Z lines in skeletal muscle. We show that Enigma is present at the Z line in skeletal muscle and that the PDZ domain of Enigma binds to a skeletal muscle target, the actin-binding protein tropomyosin (skeletal β-TM). The interaction between Enigma and skeletal β-TM was specific for the PDZ domain of Enigma, was abolished by mutations in the PDZ domain, and required the PDZ-binding consensus sequence (Thr-Ser-Leu) at the extreme carboxyl terminus of skeletal β-TM. Enigma interacted with isoforms of tropomyosin expressed in C2C12 myotubes and formed an immunoprecipitable complex with skeletal β-TM in transfected cells. The association of Enigma with skeletal β-TM suggests a role for Enigma as an adapter protein that directs LIM-binding proteins to actin filaments of muscle cells.


2000 ◽  
Vol 275 (24) ◽  
pp. 18219-18224 ◽  
Author(s):  
Sylvie Breton ◽  
Thorsten Wiederhold ◽  
Vladimir Marshansky ◽  
Ndona N. Nsumu ◽  
Vijaya Ramesh ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document